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The prevalence of mobile phones and wearable devices enables the passive capturing and modeling of human behavior at an
unprecedented resolution and scale. Past research has demonstrated the capability of mobile sensing to model aspects of
physical health, mental health, education, and work performance, etc.However, most of the algorithms and models proposed in
previous work follow a one-size-fits-all (i.e., population modeling) approach that looks for common behaviors amongst all users,
disregarding the fact that individuals can behave very differently, resulting in reduced model performance. Further, black-box
models are often used that do not allow for interpretability and human behavior understanding. We present a new method to
address the problems of personalized behavior classification and interpretability, and apply it to depression detection among
college students. Inspired by the idea of collaborative-filtering, our method is a type of memory-based learning algorithm. It
leverages the relevance of mobile-sensed behavior features among individuals to calculate personalized relevance weights,
which are used to impute missing data and select features according to a specific modeling goal (e.g., whether the student has
depressive symptoms) in different time epochs, i.e., times of the day and days of the week. It then compiles features from
epochs using majority voting to obtain the final prediction. We apply our algorithm on a depression detection dataset collected
from first-year college students with low data-missing rates and show that our method outperforms the state-of-the-art
machine learning model by 5.1% in accuracy and 5.5% in F1 score. We further verify the pipeline-level generalizability of
our approach by achieving similar results on a second dataset, with an average improvement of 3.4% across performance
metrics. Beyond achieving better classification performance, our novel approach is further able to generate personalized
interpretations of the models for each individual. These interpretations are supported by existing depression-related literature
and can potentially inspire automated and personalized depression intervention design in the future.
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1 INTRODUCTION
As close daily companions to humans, mobile phones and wearable devices can passively capture various aspects
of daily routine behavior. A large body of work has demonstrated the feasibility of mobile sensing in many
domains, such as monitoring physical health status [8, 39], detecting mental health problems [59, 62], tracking
education flow [4], evaluating work performance [40], and promoting social justice [50]. Researchers have
employed several methods to tackle their research questions, from inspecting statistical relationships to building
machine learning models for certain tasks. However, most of the prior work on algorithms and models follows a
one-size-fits-all (population modeling) approach, e.g., building one model for all users to detect depression [60, 62].
Such an approach de-emphasizes the important fact that individuals behave differently. A person may behave
similarly to one group but very differently from another group (e.g., [14, 41]). Even within the same subpopulation,
no two individuals share identical behaviors. Applying one model to all users does not effectively recognize or
leverage such differences, with reduced model performance and interpretability. Moreover, inspecting a model
that treats all users as a whole can only reveal common behaviors among the population. Thus it does not provide
personalized interpretability, which is an important factor for behavior understanding and modeling. Therefore,
there is a growing consensus that a personalized model will perform better than a population model [28].

However, it is not straightforward to just create personalized models instead of population models. Training a
personalized model usually requires a large amount of data (especially ground truth labels) from each person to
establish a good individual profile. In some domains, such as activity recognition [26, 34], labels are easier to
obtain, as opposed to domains like mental health monitoring. For many passive mobile sensing studies, obtaining
ground truth is expensive. For example, to get reliable labels of whether a person is experiencing depressive
symptoms, users need to complete a well-established survey (e.g., PHQ-9 [31] or BDI-II [9]). Filling in the survey
is time- and energy-consuming, which can easily lead participants to drop out of the study, especially when a
study is longitudinal and lasts several months or even years. There are a few efforts trying to mitigate this issue.
For example, PHQ-4 [32] is designed to be a very short screening scale for anxiety and depression. However, it can
only be reliably administered every two weeks, resulting in sparse ground truth [60]. There is often a trade-off
between the survey frequency (obtaining ground truth) and participants’ compliance or desire to continue their
participation (collecting behavior data). Many longitudinal studies involving passive mobile sensing end up with a
large amount of mobile sensing data, but very few labels (e.g., [18, 38, 62]). Therefore, simple and straightforward
approaches for creating personalized models, which depend on large amounts of ground truth labels for training,
cannot be applied. Recent advances in machine learning on training sparse models attempt to tackle this issue [35].
However, these methods lack interpretability. In addition, we show that this method does not perform well on
our mobile sensing datasets.

Instead, we propose amethod that effectively uses the study population’s large volume of behavioral feature data
to enable personalization. Our method is inspired by collaborative-filtering [30], initially used in recommendation
systems, where a new item is recommended to a user based on other users whose preference are similar to this
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user. Following this intuition, we propose a behavior relevance metric that leverages individual users’ behavioral
similarities and differences to impute missing data and generate classifications. Figure 1 shows an overview of
our data pipeline.

As a case study, we applied our method to the problem of depression detection using a mobile sensing dataset
collected from first-year college students with low data-missing rates. To evaluate the performance of our method,
we compare it against several baseline machine learning models. Our proposed method achieves an accuracy of
0.824 and an F1 score of 0.855. Compared to the state-of-the-art model [62], our model has higher performance
by 5.1% and 5.5% respectively, with statistical significance (p < 0.05). The improvement still holds when we apply
our method to a second dataset separately collected from a different college student population at a different
institution (3.6% in accuracy and 2.8% in F1 score), thus demonstrating the pipeline-level generalizability of our
approach (i.e., applying the whole pipeline to another dataset). We also tested model-level generalizability (i.e.,
using one dataset to train the model and the other dataset as the testing set), which had an accuracy of 60.8%,
and needs further investigation in future work.

Beyond achieving better classification results than existing machine learning methods, our behavior relevance
metric can further be combined with association rule mining to generate individual behavior rules that provide
personalized interpretability. On the depression detection dataset, the behavior rules extracted by our method can
capture behavior differences between the students with and without depression that are supported by the existing
literature, provide an individualized understanding of the behaviors of students with depressive symptoms, and
suggest potential directions of intervention designs for depressive symptoms improvement.
The contributions of our paper are as follows:

• We present a new approach to leverage behavior relevance (including both similarities and differences)
among users for personalized classification on mobile sensing data.

• We apply our method on depression detection among college students. Compared to the state-of-the-art
model, our method is better by 5.1% in accuracy and 5.5% in F1 score (p < 0.05).

• We verify our method by replicating the pipeline on a second independent dataset. The results show an
average improvement of 3.4% across performance metrics.

• We demonstrate that our method can generate personalized behavior rules for students with depressive
symptoms that are highly interpretable and informative for potential mental-health improvement.

2 BACKGROUND
We first review the existing work on behavior capturing and modeling from mobile sensing data. In particular, we
focus on depression detection as this is the application domain we use throughout the paper (Section 2.1). Our
method aims to address personalized behavior modeling, thus we also review the related work in personalized
machine learning models (Section 2.2).

2.1 Capturing and Modeling Human Daily Routine Behavior and Depression Status
Daily routine behaviors, such as movement patterns, sleep patterns, social activities, and physical activities,
can be tracked by sensors embedded in mobile phones and wearable devices. Researchers have demonstrated
the feasibility of using mobile sensing to capture and model daily behavior in many settings [25, 33, 59]. Major
depressive disorder (MDD), also known simply as depression, is a common but significant health challenge.
Research has found that depression affects approximately 216 million people globally [57]. In 2018, an estimated
7.2% of all U.S. adults had at least one depression episode over the past year [43]. The number increases up to
13.8% among young adults, with 8.9% having severe impairments. Detecting depression at an early stage can help
mitigate or prevent its negative consequences. There is a growing realization that everyday devices, continuously
and passively collecting behavioral data, can help us to understand the relationship between people’s daily
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behaviors and symptoms of depression [7, 12, 33]. Successes in the last decade of using mobile sensing for
depression-related research have made this topic increasingly popular. Earlier work focused on understanding the
statistical relationship between depressive symptoms and features extracted from mobile sensing data [10, 29, 47].
For instance, Saeb et al. [47] identified a significant correlation between depression scores and location features
(location variance, location entropy, and circadian movement), and also phone usage features (usage duration
and frequency). Ben-Zeev et al. [10] observed a significant correlation between changes in depression scores and
sleep duration, speech duration, and mobility.
More recently, researchers have compiled the findings from correlation analysis to create machine learning

models for depression detection. For example, Farhan et al. [20] used location features to detect biweekly
depression and their best model achieved an F1 score of 0.82 on a dataset with 79 college students over eight
months. Wahle et al. [58] trained models on multiple data streams, including location, physical activity, phone
usage, andWiFi scans, and achieved an accuracy of 61.5% for depression detection on a dataset with 36 participants
over ten weeks. Wang et al. [60] hand-crafted several cross-sensor features from mobile and wearable data. Their
best model achieved 81.5% recall and 69.1% precision on a dataset collected from 68 college students over two
nine-week terms. Association rule mining [3] (ARM) is a powerful method for extracting interpretable behavior
rules. Xu et al. [62] proposed an automated cross-stream feature extraction pipeline that leveraged ARM behavior
rules to extract features from mobile sensing data. Their model achieved an accuracy of 81.8% and an F1 score of
84.3% on a dataset containing 138 college students over 16 weeks.
Most of the work in depression detection follows a one-size-fits-all or population modeling approach, i.e.,

training one classification model for all testing samples. This approach often results in reduced model performance
compared to what might be possible with personalized models. Moreover, even if a population model did perform
well and was interpretable (e.g., [60, 62]), it only provides an understanding of the population behavior as a whole.
However, no two people are identical. Each individual behaves differently from others. A good interpretable
classification model should take this level of difference into account. Some previous work has trained individual
or personalized models on an individual’s own data. For example, Canzian and Musolesi [12] used one person’s
location features to train an individual-level depression detection model. Their model achieved 0.71 sensitivity and
0.87 specificity scores. However, isolating one individual from the rest of the population will ignore meaningful
information that comes from others, e.g., those who are similar to or very different from this individual. Our
method, inspired by memory-based collaborative filtering, leverages the behavior correlations among individuals
to predict whether students are experiencing symptoms of depression, and ARM to generate individualized
behavior rules to provide detailed understanding. Our results show that such a method can achieve better
prediction performance than [62] and more personalized interpretation.

2.2 Personalized Machine Learning and Behavior Modeling
There are two major types of personalized machine learning algorithms: sample-specific methods and similarity-
based methods [56]. We review both classical and modern examples of the two methods. Sample-specific methods
are model-based methods that leverage training and testing samples’ features to enable personalization when
inducing a model. Classical examples include lazy decision trees (LDT) [22] and lazy Bayesian rules (LBR) [66],
where part of the training occurs when the testing sample is collected. The aforementioned case of building
separate models on individual data [12] is another example, where the individual identifier is used to select the
model (i.e., the model trained on this individual’s data) for prediction. There have been more advances in machine
learning community [49, 63]. For example, Lengerich et al. [35] proposed personalized logistic regression model
(PLR) to include different parameters for every sample, with the parameter matrix having a low-rank property as
the constraint on the parameters’ degree of freedom.
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Table 1. Summary of approaches found in closely related work. Method describes the approach and gives examples from the
literature. The other three columns indicate the properties of each method. For methods that can be trained on few labels
per person, we choose typical ones as baselines (marked by ∗).

Method Interpretability Personalization Number of Labels
Per Individual

Current passive sensing methods for
depression detection [20, 58, 60], [62]∗ Yes No Few

General sample-specific method
e.g., LDT [22], LBR [66]∗, PLR [35]∗ No Yes Few or Many

Sample-specific method for
behavior modeling [12, 44, 65] Limited Yes Many

General similarity-based method
e.g., LWR [6], KNN [30]∗ Limited Yes Few or Many

Similarity-based method for
behavior modeling [1, 34, 36, 52] Limited Yes Many

Our method Yes Yes Few

In the area of behavior modeling, there is some related work on activity recognition and affective computing
that has leveraged large-scale data, thus supporting sample-specific methods. For instance, Zhao et al. [65]
proposed a semi-supervised activity recognition method. They first used a general decision-tree on the testing
user’s unlabelled data, and then added a one-step K-means clustering to re-assign the outputs so that an individual-
specific tree can be retrained. Rudovic et al. [44] leveraged individual demographics and behavioral assessment
scores to train a hierarchical deep learning model for emotion recognition. However, these sample-specific
methods usually require a large number of ground-truth labels for each individual. In the area of passive sensing,
the collection of labels is expensive, and many data sets have only one label for each individual (e.g., [59]). Further,
these methods do not focus on interpretability, which is an important factor for behavior understanding.

In contrast, similarity-based methods use a similarity or a distance measure and combine training samples in
some fashion for the prediction. Traditional methods such as K-Nearest Neighbour (KNN) [30] and locally weighted
regression (LWR) [6] are examples of this approach. There have been more recent advances in the behavior
modeling area with this type of method. Lopez-Martinez et al. [36] used spectral clustering to group individuals
into several groups based on their behavioral profiles and then applied multi-task learning for subjective pain
estimation. Sun et al. [52] proposed a multi-task learning objective function for activity recognition by including
the similarities of the activity patterns between activity pairs. Lane et al. [34] leveraged personal informatics,
mobility behavior, and raw-sensor-data to construct three similarity matrices. They used the three matrices to
initialize parameters when training three boost models for activity recognition. Then, they leveraged majority
voting of the three models to determine the final predictions. Abdullah et al. [1] built on this idea. They added a
clustering step based on behavioral similarity and only conduct the training within clusters for activity recognition.
Their method assumed there is a large number of labels from each individual, however this is not always practical,
especially in other behavior modeling areas such as depression detection. In addition, they did not include the
temporal behavior information into the similarity measurement, which is important for behavior understanding.

To summarize, in the space of behavior modeling, there is ample evidence that behavior activity traces capture
information that can be used for detecting important facets of the human experience. However, most methods
follow a population-modeling approach, despite great variability in behavior between people and over time.
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Fig. 1. The overview of the pipeline

In many behavior modeling areas such as depression detection, sparse labels are captured through the effort
of participants, making a per-person model infeasible. Even in areas such as activity recognition where it is
easier to obtain a rich set of ground truth labels, the existing personalization methods do not provide enough
interpretability. Table 1 summarizes some closely related work. Our method addresses both personalized behavior
detection (e.g., depression detection) and personalized interpretation (e.g., understanding the life experience of
a person with depressive symptoms). We show that memory-based collaborative filtering can be used in the
domain of behavior modeling. We enhance the interpretability of our method by leveraging ARM to generate
human-understandable behavior rules. We describe this approach in more detail in the next section.

3 PERSONALIZATION ALGORITHM
We now present our method that leverages behavioral relevance for personalized classification (Section 3.1). We
further introduce a behavior rule mining process to provide individualized interpretation (Section 3.2). The core
idea is to leverage a behavior relevance metric to identify a unique, informative sub-group of other users in the
dataset. The personalized group is then leveraged to obtain classification and interpretation results.

3.1 Classification
We first introduce the concept of user behavioral profiles and its relationship with collaborative-filtering (Sec-
tion 3.1.1). Then, we leverage the correlation matrix from user behavioral profiles to impute missing data
(Section 3.1.2). We then propose a measurement of the behavior relevance (square of the correlation) using the
imputed behavioral profiles (Section 3.1.3) and use the metric to select features that have good performance in the
training set (Section 3.1.4). When a new testing user is added to the analysis, we employ the selected features to
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generate intermediate classification outputs. Finally, we use majority voting to compile the intermediate outputs
into the final classification output (Section 3.1.5). Figure 1 visualizes the overall pipeline.

3.1.1 Collaborative Filtering and Behavior Relevance Metric. Our method is inspired by the idea of memory-based
collaborative filtering [30]. It was originally used in recommendation systems, where an item is recommended to
a user based on a certain similarity between two users or items, i.e., a item from another user who has similar
preferences for items as this user (user-level), or another item that has a similar preference profile as this item
(item-level). Borrowing the idea of the user-level collaborative filtering, we propose the concept of a user-behavior
profile to depict a group of users’ behaviors. Each user-behavior profile, represented by a matrix (see Figure 2),
focuses on one particular feature. The user-behavior profile can be viewed as a user-item matrix from traditional
collaborative filtering. Our method looks at each feature independently. Therefore, we also include users’ target
labels (i.e., ground truth labels) in each behavior profile (the bold frame marked with L in Figure 2), which can be
regarded as a column of “special items” in the profile matrix. A new user’s “special item”, marked by X , is the
element that needs to be predicted. Note that the matrix will inevitably contain missing values (marked as ?) due
to software, hardware and/or user issues that result in missing data.

3.1.2 Data Imputation. After constructing the user behavior profile for each feature, we then impute the missing
data in the behavior profiles. Following Xu et al. [62], we first normalized each user’s features by discretizing
all behavior features into three levels – low as 1 (0-33 percentile), medium as 2 (33-66 percentile), and high as
3 (66-100 percentile) – using their own data as each individual’s behavior has its own consistency and set of
routines. This can also effectively reduce the bias of outliers. Then, we use the weighted average of other users’
normalized data as the imputed value, where the weights are the correlation of the longitudinal feature value
between this user and other users. The intuition is to leverage the data from people who have similar behavior
(for the feature that the data represents) to impute the missing value. Algorithm 1 lists out the detailed steps for
data imputation.

3.1.3 Behavior Relevance Metric. From the imputed data, we propose a behavior relevance metric. Prior work
focuses on people who have similar behaviors (e.g., [1, 34]). However, when predicting the final outcome (e.g.,
having depressive symptoms or not), the scope can be expanded. For people whose behaviors are strongly

Fig. 2. The similarity between our method and collaborative filtering. The left part shows a user-item matrix that is
commonly used in recommendation systems, where the “?” marks indicate preference scores to be predicted. In contrast, the
right part shows the common data format in mobile sensing. The matrix is the behavior profile of one particular feature
(each user has a time series data from T1 to TM ), plus a column of labels (Column L). where “?” marks indicate the missing
value and “X” mark indicate the target label to be predicted, e.g., whether the new user is depressed or not.
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related to a target user, they can be divided into to two types. People who behave similarly (with strong positive
correlation) are the ones whose behavior patterns change in a similar way as the target user, e.g., they all have
more phone calls during the weekend. Moreover, there are also people who behave differently (with strong
negative correlation). Here, behavior patterns change in a way opposite to the target user, e.g., the target user
mostly stays at home and moves less on weekday evenings, while these people often hang out for socializing at
that time. Both types of people are relevant to a target user. Their similarities and differences may be indicators
for classification (e.g., social behaviors are related to depressive symptoms), thus both should have representation.
Therefore, we further define the behavior relevance metric as the square of the Pearson correlation coefficient.
The metric indicates high relevance if two users have either very similar or very different behavior.

3.1.4 Feature Selection. The number of behavior features captured by mobile phones and wearable devices can
be huge. Moreover, prior literature has suggested that people have different behavior patterns during different
times of the day [13], and between weekdays and weekends [46]. Similar to Wang et al. [59], we group raw
sensor data into 10 epochs that capture behavior at different times: five epochs for weekdays (morning 6am-12pm,
afternoon 12pm-6pm, evening 6pm-12am, night 12am-6am, and the whole day) and the same for weekends. This
further increases the number of behavior features by an order of magnitude. Therefore, we need to select the
features that are the most helpful for distinguishing target labels.

Data:
1 E: the epoch set; D: the days in the dataset;U : users in the training set;
2 F : the overall feature set. Fe : the feature set of a particular epoch e (⊆ E), Fe ⊆ F ;
3 RE ,F : the list of raw behavior profiles. Each matrix Re ,f (|U | × |D |) is the behavior profile of feature f

(⊆ Fe ) in epoch e (⊆ E). Re ,f ’s rows and columns can be indexed by a number or a list. For example,
Re ,f [u,d] locates the feature value of user u on day d . Re ,f [u,D] locates the feature array of user u in
days D. The same can be applied to other matrices in algorithms;

4 PE ,F = Copy(RE ,F ) ; // The placeholder of the imputed behavior profiles

5 for f in F do
6 e = GetEpoch(f , E);
7 CorU = PairwiseCor (Re ,f ,Re ,f ) ; // Calculate the user-pairwise correlation matrix

(|U|x|U|) with the missing value ignored

8 for u inU do
9 Dm = FindDayMissinд(Re ,f [u,D]) ; // Get the days where u has missing data

10 for d in Dm do
11 Unm = FindUsersNotMissinд(Re ,f [U ,d]) ; // Find users who have data on d

12 weiдhtu = CorU [u,Unm] ; // Use correlation scores as weights

13 Pe ,f [u,d] =WeiдhtedAvд(Re ,f [Unm,d],weiдhtu ) ; // Impute the missing data

14 end
15 end
16 end
17 Return(PE ,F ) ; // Return the imputed behavior profiles

Algorithm 1: Data Imputation.
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Data:
1 E, F , Fe , D,U same as Algorithm 1;
2 L: the label list in the training set. |L| = |U |. The list can be indexed by a user u to get the label L[u], or by

a list of usersU to get the label list L[U ]. The same can be applied to other lists/arrays;
3 PE ,F : the list of imputed behavior profiles. Each matrix Pe ,f (|U | × |D |) is the imputed behavior profile of

feature f (⊆ Fe ) in epoch e (∈ E);

4 RankinдScoreF = EmptyArrayWithSize(F );ThresholdF = EmptyArrayWithSize(F ) ;
5 for uvd inU do
6 Utr = U \ {uvd } ; // Evaluate across each training user to ensure stability

7 accs = EmptyArrayWithSize(F );
8 for f in F do
9 e = GetEpoch(f , E);

10 CorUtr = PairwiseCor (Pe ,f [Utr ], Pe ,f [Utr ]) ; // Calculate user-user correlation matrix

11 RelUtr = CorUtr ⊙ CorUtr ; // Correlation square as the relevance matrix

12 weiдhts = RelUtr − diaд(RelUtr ) ; // Relavance metrics against others

13 labelscores =WeiдhtedAvд(L[Utr ],weiдhts) ; // Label scores calculated from others

14 th1 = Avд(labelscores[{u;u ∈ Utr , L[u] = T }]); th2 = Avд(labelscores[{u;u ∈ Utr , L[u] = F }]);
15 th = Avд(th1, th2) ; // Splitting threshold

16 UpdateAvд(ThresholdF [f ], th);
17 accs[f ] = AccuracyByThreshold(labelscores, th, L[Utr ]);
18 end
19 Filter (accs, th = 0.5) ; // Remove features that perform poorly on the training set

20 for f in F do
21 if Rank(f ,accs) ∈ TopRank(accs) ; // Assign ranking scores

22 then RankinдScoreF [f ]+ = Rank(f ,accs) ; else RankinдScoreF [f ]+ = 0 ;
23 end
24 end
25 SF = SelectTopFeatures(RankinдScoreF );
26 TH = ThresholdF [SF ];
27 Return(SF ,TH ) ; // Return the selected features and their corresponding thresholds

Algorithm 2: Feature Selection

Using the behavior relevance metric, we conduct a feature selection process on the training set. For each
feature, an inner leave-one-user-out loop is used to find the most important and stable features. Specifically,
we take one user within the training set as the “validating user” each time (the rest are “training users”), and
compute label scores for all training users, by calculating the weighted-average of the label value (False is -1 and
True is 1), with the relevance scores (against other training users) as weights. Then, we calculate the average of
these scores among users with False labels and another average among users with True labels. We use the mean
of the two average scores as the splitting threshold. To see how well this feature works, its threshold is compared
against each training user’s label score to get a tentative label. Having the labels and the ground truth, we can
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Data:
1 E, D,U , L same as Algorithm 1;
2 SF : the selected feature set from Algorithm 2; SFe : the selected feature set of a particular epoch e (⊆ E);
3 TH : the threshold lists corresponding to the selected features from Algorithm 2;
4 PUE ,SF : the list of behavior profiles of training usersU . Each matrix PUe ,f (|U | × |D |) is the behavior profile

of feature f (⊆ SFe ) in epoch e (∈ E);
5 ut : a testing user; PutE ,SF : the list of behavior profiles of the testing user t . Each matrix P te ,f (1 × |D |) is the

behavior profile of feature f (⊆ SFe ) in epoch e (∈ E).

6 Results = EmptyArrayWithSize(SF );
7 for f in SF do
8 e = GetEpoch(f , E);
9 Corut = PairwiseCor (Pute ,f , P

U
e ,f ) ; // Calculate the correlation matrix (1x|U|) between the

testing users and users in the training set

10 Relut = Corut ⊙ Corut ; // Correlation square as the relevance scores

11 Ut = FilterUsers(Relut ) ; // Remove users whose similary is among bottom-quartile

12 weiдhtt = Relut [ut ,Ut ];
13 score =WeiдhtedAvд(L[Ut ],weiдhtt );
14 if score > TH [f ] then Results[f ] = TRUE else Results[f ] = FALSE

15 end
16 FinalResult = MajorityVotinд(Results) ; // Majority voting across epochs

17 Return(FinalResult);

Algorithm 3:Memory-based Classification

obtain an average accuracy for this feature from training users. We filter out features whose validation accuracy
is below 0.5 and assign a ranking score for the top ten percentile among the remaining features according to the
accuracy value (score n for nth best feature) and zero for other features. We repeat this across each “validating
user” and get a series of ranking scores for each feature. We then sum the score and pick half features with the
lowest scores (i.e., top five percentile features) as the best features.

3.1.5 Majority Voting. When a testing user is added to the analysis (with already collected data), we first calculate
their relevance scores (against the users in the training set) for only the selected features. Then, for each selected
feature, we filter out the training users whose relevance score is among the bottom-quartile (i.e., bottom 25
percentile, a conservative threshold [27]) as their behavior is not relevant to the new user and can introduce
noise. This leads to a unique, personalized training set for each new user. For each selected feature, we calculate a
weighted-average label score for the new user, and obtain an intermediate classification output using the splitting
threshold calculated from users in the training set. In other words, for each selected feature, using data from the
remaining users for that feature, we produce a classification result just for that feature. Finally, we use majority
voting approach to aggregate these features’ intermediate outputs, as shown in Algorithm 3.

3.2 Interpretation
In Section 3.1, we show how our behavior relevance metric can be used to select effective features to generate
classification results. However, just having these effective features is not enough. We need to know more about
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the contexts to better understand an individual’s behaviors. For example, the duration of phone usage may be an
important feature for depression detection. But participants may interact with their phones at home versus at
social places with different frequencies. Moreover, people have distinctive daily routines, e.g., some may spend
more time on their phones when they are at home while others may be more likely to use phones at social places.
Such an interpretation needs to be personalized to obtain an accurate understanding that is tailored to each
person. Beyond classification, we further propose a method that combine the relevance metric with association
rule mining (ARM) to provide personalized interpretation.
Previous work applied ARM on the whole participant group to generate popular behavior rules among the

population (e.g., [62]). In contrast, we propose to focus on a single user’s data for personalized interpretation.
Our interpretation focuses on generating personalized behavior rules that can capture the behavior differences
between target users and other users, provide more insights into their life experiences, and suggest potential
directions on how to support behavior changes to achieve a desired goal.

As the interpretation is focused on behavior distinctions, we propose to identify a small subset of users whose
behaviors are very different from a target user (Section 3.2.1). Then, we leverage ARM to mine frequent behavior
rules separately, once on the target user’s data and then on the identified users’ data (Section 3.2.2). Finally, we
identify the rules that can provide the most meaningful information (Section 3.2.3).

3.2.1 Identifying Informative User Groups with Negative Correlated Behavior. Different users have different
degrees of similarities when compared to a target user. In order to generate personalized interpretation, we need
to first identify a group of users that are the most informative. Users in the group have differing labels than the
target user, and very different behavior on the selected features. For instance, if the target user is a student with
depressive symptoms, then the identified group would be the subset of the users who do not have depressive
symptoms and their behavior features are strongly relevant to the target user, but in a negative direction, i.e.,
strong negative correlation (among the top-quartile for a given behavioral feature). It is worth noting that this
process is conducted on each target user and each selected feature individually. Therefore, the identified groups
are personalized to every user.

3.2.2 Behavior Rule Mining. We will use one target user t and one selected feature fs , together with the identified
user group д as the examples when introducing the next two steps. Given the target user t , we create an identified
user group д in terms of the selected feature fs . We then employ ARM on the discretized features two times to
mine frequent behavior rules, once using the target user t ’s data and again using the identified group д’s data.
The output rules of ARM are in the form of X → Y with support P(X ) and confidence P(Y |X ), where both X and
Y are a set of discretized features at certain levels.

Each selected feature fs belongs to a particular epoch. The rule mining is performed on the whole feature set
within the epoch, which outputs a large number of behavior rules. An informative rule should suggest meaningful
behavior changes to influence the final outcome. To identify these rules, we only focus on the rules whose Y
includes the selected feature fs , because fs affects the classification result during the majority voting procedure.
We dynamically adjust ARM support and confidence thresholds to make sure the numbers of behavior rules from
the target user and the identified group are no less than ten thousand.

3.2.3 Behavior Rule Pairing. Having the rules from the target user side t and the identified group side д, we need
to make the two sides comparable. We propose a rule pairing approach to align the rules from the two sides.
If two rules (one from each side) have exactly the same antecedent and a similar consequent, they can be

aligned. Specifically, two rules will be paired if they have identical X (the same features at the same discretized
value levels) and the same features in Y (but not necessarily the same level). For example, if the target user has a
rule Rt as Xt : { fx (low)} → Yt : { fs (medium)}, a rule to be paired on the identified group Rд needs to have Xд
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Data:
1 E, F , Fe , D,U , L same as Algorithm 1; SF : the selected feature set from Algorithm 2;
2 ut : a target user with L[ut ] = tarдet ;Untar : non-target users with L[Untar ] , tarдet , e.g., with vs. without

depressive symptoms;
3 PE ,F : the list of behavior profiles. Each matrix Pe ,f (|U | × |D |) is the imputed behavior profile of feature f

(⊆ Fe ) in epoch e (∈ E).

4 PersonalizedRules = EmptyList();
5 for f in SF do
6 e = GetEpoch(f , E);

// Get the identified group whose behavior are most negatively correlated

7 Put = Pe ,f [ut ,D]; PUntar = Pe ,f [Untar ,D];
8 Corut = PairwiseCor (Put , PUntar ) ; // Calculate correlation scores between each target

user and non-target users

9 Relut = Corut ⊙ Corut ;
10 filter(Relut , Siдn(Corut ) < 0) ; // Focus on users with negative correlation

11 Uidt = GetTopUsers(Relut ) ; // Get the top quartile users as the identified group

// Mine behavior rules seperately, focusing on rules with f in Y

12 P ′
ut = {Pe ,f [ut ,D]; f ∈ Fe }; P ′

Uidt
= {Pe ,f [Uidt ,D]; f ∈ Fe } ; // Get full behavior set

13 BehaviorRulesut = AssociationRuleMininд(P ′
ut , f );

14 BehaviorRulesUidt = AssociationRuleMininд(P ′
Uidt
, f );

// Focus on the rules with the highest confidence under each context, i.e., X

15 BehaviorRulesut = UniqueContext(BehaviorRulesut );
16 BehaviorRulesUidt = UniqueContext(BehaviorRulesUidt );
17 PairedRules = Pair (BehaviorRulesut ,BehaviorRulesUidt ) ; // Same context X

// Select the top three rules with largest gap on rule confidence

18 TopRules = GetTopRules(PairedRules);
19 Append(PersonalizedRules,TopRules);
20 end
21 Return(PersonalizedRules);

Algorithm 4: Personalized Interpretation

exactly same as Xt , i.e., Xд : { fx (low)}. Meanwhile, its Yд needs to have the same features fs , but not necessarily
at the same level, i.e., Yд : { fs [at any level]}.

On each side, it is possible that among the selected rules, there might be multiple rules having identical X and
same features in Y , but at different feature value levels. Continuing the example, on the identified group side,
one rule Rд1 is Xд : { fx (low)} → Yд : { fs (medium)}, while another rule Rд2 is Xд : { fx (low)} → Yд : { fs (hiдh)}.
This will lead to multiple pairs of rules, i.e., Rt can be paired with both Rд1 and Rд2. However, Rд1 and Rд2 appear
with different frequency in the dataset, as represented by their confidence values (their support values are the
same because of the same Xд). Including both pairs will introduce additional noise. Therefore, for each X , we
only retain the rule with the highest confidence and discard other rules, as this rule is the most representative
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and indicates the most common behavior when X appears. Then, we pair these representative rules following our
description above and discard the unpaired rules. Once we pair the rules, we select the top three rule pairs that
have the biggest confidence gap between the two sides for interpretation. This step finds the largest behavior
differences between the target user and the identified group. We repeat the process for each selected features to
obtain a set of personalized behavior rules for the target user.

The pipeline is described in Algorithm 4. Note again that the whole pipeline is conducted on each target
user independently. Thus the interpretation provided by the final selected rules is personalized.

4 DATA COLLECTION AND IMPLEMENTATION
We describe the two depression datasets that we use to demonstrate the effectiveness and the generalizability of
our method (Section 4.1). We then briefly explain the feature extraction procedure (Section 4.2). In addition, we
introduce how we implement our method with these datasets (Section 4.3).

4.1 Data Collection
Our data collection studies were inspired by and modeled after the work of Wang et al. [59]. The two datasets were
collected from two separate Carnegie-classified R-1 universities in the United States in a very similar procedure.
In both institutions, we got IRB-approval and recruited first-year undergraduate students via emails and Facebook
posts. We ended up with 188 students in the first dataset (male 77, female 110, non-binary 1, age mean = 18.2, sd
= 0.40), and 209 students in the second dataset (male 75, female 134, age mean = 18.4, sd = 0.69). In both studies,
students were invited to a research lab to sign a consent form, download a mobile application to track sensor
data from their smartphones, and get a Fitbit wearable device to track their steps and sleep behavior. They were
asked to maximize the time that the app was alive in their phones’ background, and wear the Fitbit over the
whole study period. In the first institution, the study lasted one semester (spring semester, 16 weeks). At the
beginning and the end of the semester, participants were asked to answer a well-established questionnaire, the
Beck Depression Inventory-II (BDI-II) [9], to evaluate their depressive symptoms. The second institution follows
a quarter system, and the study lasted two quarters (winter and spring), including the 1-week break in between
quarters. In our study we used only the spring quarter data (10 weeks) as the second dataset. Participants were
asked to answer the depressive symptom evaluation questionnaire at the end of the second quarter. Participants
in both institutions were allowed to keep the Fitbit after the study and received up to $205 and $245, in each
study respectively, for compensation, based on their compliance.

Table 2. Information of the two studies after removing students who dropped out or were missing a significant amount of
data. Students with a last BDI-II score > 13 labelled as having depression, in accord with the interpretation of the BDI-II [9].

Study Days Overall
Size

Dropped out
or Removed

Dataset
Size

iOS
Users

Last BDI-II Outcome
Non-depression Depression

Inst 1 106 188 50 138 97 59 38 (39.2%)
Inst 2 166 207 38 169 134 84 56 (40.0%)

4.1.1 Ground truth Collection. In both institutions, we employed the BDI-II [9], a widely used psychometric test,
for depressive symptoms severity measurement, to obtain ground truth. The BDI-II is one of the most widely
used self-report measures of the presence and severity of depressive symptoms in non-clinical samples and
clinical trials of depression [24]. Many studies have provided validation information and normative data about
the BDI-II in college students in large sample sizes (e.g., [16, 51, 61]). The outcome of the questionnaire ranges
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from 0 to 63. For college students, the cut-offs are 0-13 (no or minimal depression), 14-19 (mild depression), 20-28
(moderate depression), and 29-63 (severe depression) [19]. In both datasets, we labeled the students whose last
(i.e., end-of-term) BDI-II score was higher or equal to 14 as having depressive symptoms.

4.1.2 Passive Sensor Data Collection. Our data collection application was developed based on the AWARE
Framework [21]. The application recorded a phone’s nearby Bluetooth addresses, call logs, phone usage (charging
activity and screen status), and location. Further, participants were required to wear a Fitbit that recorded their
steps and sleep status (as shown on the left of Figure 1). Data from AWARE was anonymized locally on the phone
and automatically transferred over Wi-Fi to our back-end server when the phone was being charged. Fitbit data
was downloaded using the Fitbit Web API at the end of the study. Participants were asked to keep their phone
and Fitbit charged and carry/wear them at all times during the study period. Table 3 summarizes the passive
sensor data and their related behaviors.

After data collection, we removed users who did not have data for more than half of the study days, to avoid
the bias of low-quality data. Although the BDI-II scores are not significantly different between the removed
students and those of the retained students (t = 1.84,p = 0.07), such a removal could potentially introduce bias
into our dataset. We will have more discussion about this in Section 6.4.
Table 2 summarizes the high-level details for the two studies. Previous work found that the data collected

from the iOS platform and Android platform were quite different [37]. Our method focuses on the heterogeneity
among individuals rather than the heterogeneity caused by hardware or software. Therefore, we focus on only
the iOS platform users as they are the majority in both of our datasets. Among all iOS users, the rate of having
depression is high in both institutions (39.2%/40.0%), which is similar to national rates for depression among
college students ACHA-NCHA II [2].

4.2 Behavior Feature Extraction
As introduced in Section 3.1.4, we used an approach similar to Wang et al. [59] to group raw sensor data into
epochs that capture behavior at different times of day. We grouped the data in five epochs for weekdays (morning
6am-12pm, afternoon 12pm-6pm, evening 6pm-12am, night 12am-6am, and all day) and the same five epochs on
weekends, resulting in 10 epochs in total. We then aggregated sensor streams on a per-day, per-epoch basis into
daily-epoch features, e.g., the number of phone calls on the morning of Wednesday, February 14, 2018.

Most features were aggregated using a mix of mean, maximum, minimum, and standard deviation for sampled
data, and count and duration for event-based data. However, some features required additional pre-processing.

Table 3. Sensor data and information aggregated into features.

Behavior Feature Type Source Sampling Information Being Aggregated into Features

Phone Usage Screen

AWARE
event-based

Number of unlocks per minute,
total time with interaction, total time unlocked

Social Activity Call Number and duration of in-coming
/out-going/missed calls

Bluetooth
1 per 10 minutes

Number of unique devices,
number of scans of most/least frequent device

Mobility Location GPS latitude, longitude, altitude

Campus Location data integrated with the campus map,
e.g., classrooms, sport space, green space

Sleep Sleep Fitbit 1 per minute Asleep/restless/awake/unknown duration and onset
Physical Activity Step 1 per 5 minutes Number of steps
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For location features, we calculated location variance, total distance traveled, average/variance of speed, cir-
cadian movement [47], number of significant places visited, number of transitions between places, radius of
gyration [12], percentage of time spent at top-3 frequent clusters, length of stay at clusters, and location entropy.
We further looked into the relationship between the user’s location patterns and the college campus map to
capture more specific contextual information, focusing specifically on Greek houses (which tend to hold social
events), residential halls, sports spaces, green spaces, and academic buildings. For Bluetooth, we clustered devices
into frequently seen groups and count the prevalence of each cluster. For sleep, we added sleep efficiency, and
sleep onset. As for steps, we identified active bouts and sedentary bouts according to their stepping behavior
(less than 10 steps in a 5-minute interval).

Each sensor stream results in features that can capture behavior variability that might be influenced by
depressive symptoms [5]. For instance, depression can cause sleep disturbances, which might impact features
such as sleep duration [55], and diminished activities, which could be reflected in the number of steps taken [17].

4.3 Implementation of Our Algorithm
We first normalized each user’s features relative to their own data. We then employed the normalized features to
calculate the behavior relevance among users. After applying the imputation in Algorithm 1, we use the imputed
data for feature selection and classification, following Algorithm 2 and Algorithm 3.
We applied the interpretation Algorithm 4 on each target user, i.e., every student who was labeled as having

depressive symptoms. Following the approach in Xu et al. [62], we first discretized each user’s features relative
to their own data (similar to the normalization step) into three levels: low, medium, and high. All of the features
in the selected feature’s epoch were input to ARM (as described in Section 4.2). The output rules of ARM were
in the form of X → Y . For example, a rule X : {[Location] Home Stay Duration (high), [Activity] Step Counts
(low)} → Y : {[Screen] Phone Interaction Time (high)} reflects that if a student were at home for a long duration
and they did not walk around much, then they were likely focusing on their smartphone. This rule could reflect a
common behavior on weekday evenings. As introduced in Section 3.2, we select rules based on each selected
feature independently, during which we only focused on the rules whose Y contained this particular feature.
Continuing the example above, if the selected feature were [Screen] Phone Interaction Time, then the rule would
be retained, otherwise it would be discarded. In addition, among the retained rules, if there were rules that
have identical X and only differ in levels of the features in Y , the rule with the highest confidence value would
be retained. For example, one rule was X0 → Y1 : {[Screen] Phone Interaction Time (high)}, with confidence
at 0.7, while the other rule was X0 → Y2 : {[Screen] Phone Interaction Time (low)} with confidence at 0.3. The
rule X0 → Y1 would be retained for pairing and X0 → Y2 would be discarded. Following Algorithm 4, the final
personalized rules were aggregated from all selected features.

5 EVALUATION
We evaluated the performance of our algorithm in a number of ways. Using the dataset from institution 1, we
first compared our method against several traditional baselines and recent advances in Section 5.1. We further
evaluated how much data our method needs in Section 5.2. Then, we verified the generalizability of our method
using the second dataset in Section 5.3. Finally, we demonstrated how our method can generate personalized
interpretation and inspected examples of personalized behavior rules in Section 5.4.

5.1 Personalization Leads to Higher Performing Models
We compared our method with a few closely related baseline methods on the same dataset (see Table 1). Some are
typical/recent personalized machine learning methods. Some are popular time-series behavior modeling methods.
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We implemented these baselines and throughout the evaluation, we employed leave-one-user-out cross-validation
to avoid over-fitting [54, 64].

(1) Majority, a naive baseline that simply classifies all samples as the major class in the dataset.
(2) Single Best Threshold, a simple threshold-based method that used the best single aggregated feature (the

mean and the variance over the whole study period of each epoch) as the splitting threshold.
(3) K-Nearest Neighbour (KNN), a typical similarity-based method that use similar neighbours for classifica-

tion [30]. We adopted Euclidean distance over all features (the same as our model’s input) as the similarity
measurement. K was set as 5.

(4) Lazy Bayesian Rules (LBR), a classical sample-specific personalized learning algorithm that builds a naive
Bayesian classifier specifically for each test sample when it appears [66]. We used all epochs’ aggregated
features for training, as this is the common practice for behavior modeling (e.g., [62]).

(5) Long short-term memory (LSTM), a neural network that is commonly used to model intrinsic relationships
in time series data [48], which shares similarity with our relevance metrics. Given the limited data size, we
used a small two-layer bidirectional LSTM, both with 16 hidden units and each users’ feature across the
whole study period as one data point.

(6) Personalized Logistic Regression (PLR), a recent state-of-the-art sample-specific personalized algorithm [35].
It assigns specific parameters for each sample, with low-rank representation and external covariates as
the approaches to limit the parameters’ degree-of-freedom. We followed the practice in [35] to use the 2D
t-SNE embedding of the aggregated features from the first half of the study as the external covariates, and
the aggregated features from the second half as the training and testing features. We set the rank as 10 and
the number of neighbors as 3 based on grid search.

(7) Multi-sensor Classifier (MSC), a popular method for depression detection that concatenates multiple sensors’
average feature value and trains a classifier with off-the-shelf models. It closely replicates some previous
work (e.g., [20, 47, 58]). We used random forest since it is one of the most commonly used off-the-shelf
models for passive sensing because of its robustness and good performance. The maximum depth and the
tree numbers were set as 5 and 30 based on tuning.

(8) Contextually-Filtered Classifier (CFC), a state-of-the-art behavior modeling algorithm that identifies co-
occurrence patterns among features and extracts contextually filtered features for model training [62]. Note
that CFC is a population modeling approach. We followed the practices in [62] to extract contextually-
filtered features and trained the model. The hyperparameters of the final AdaBoost decision-tree-based
classifier, i.e., maximum depth and the number of the estimator, were set as 5 and 20 based on tuning.

The results are summarized in Table 4 in terms of five metrics: accuracy (the overall success rate), balanced
accuracy (taking the imbalance on labels into account), precision, recall and F1 score. Compared to the best-
performing baseline model (CFC), our method’s results have improvement in most metrics, particularly the
accuracy (5.1%), the recall (10.1%) and the F1 score (5.5%).

5.2 The Amount of Data Needed by The Algorithm
We also investigated how much data is needed in order to obtain a satisfactory performance of our algorithm. We
focused on several aspects that have important practical implications: How many days of data does the algorithm
need to establish a good relevance metric (Section 5.2.1)? How many people are needed in the training set to
build a high-performance model (Section 5.2.2)? Which feature types are important for the algorithm to work
effectively (Section 5.2.3)?
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Table 4. Comparison of baseline and state-of-the-art machine learning classifiers and our new algorithm. T-tests on both the
balanced accuracy and the F1 score between our method and the best baseline CFC show that our method significantly
outperforms the baseline method (p < 0.05 in all cases).

Classification Accuracy Bal Accuracy Precision Recall F1 Score
Majority 0.608 0.500 0.608 1.000 0.756
Single 0.639 0.679 0.853 0.492 0.624

KNN [30] 0.567 0.527 0.627 0.712 0.667
LBR [66] 0.629 0.615 0.702 0.678 0.690
LSTM [48] 0.557 0.462 0.589 0.898 0.711
PLR [35] 0.667 0.668 0.765 0.661 0.709

MSC [20, 47, 58] 0.716 0.700 0.725 0.771 0.747
CFC [62] 0.773 0.781 0.863 0.746 0.800

Our Algorithm 0.825 0.819 0.862 0.847 0.855

(a) Counting Forward (b) Counting Backward

Fig. 3. The results when using data from different numbers of weeks. Forward means using the data between the beginning
of the data collection period (the beginning of the semester) and the particular week number, while backward means using
the data between the particular week number till the end of the period (the end of the semester). Error bars indicate the
standard error of the mean.

5.2.1 How Many Days Does The Algorithm Need? We evaluated the effect of the number of days of data from
two perspectives: forward and backward. Given a particular week number, forward means only using the data
between the beginning of a study and the week number, while backward means only using the data between the
week number through until the end of the period, i.e., the time when students finished the final BDI-II survey.
These two perspectives are complementary. The first perspective indicates how early we can use the collected
data to predict the depression status at the end of the semester, while the second perspective indicates how
depression can be reflected from the most recent behavior. Figure 3 visualizes the results of both perspectives.

In general, both figures present an increasing trend on the two metrics as the number of days used for training
increases (reading left to right in Figure 3a and right to left in Figure 3b). We observed some interesting phenomena.
In the counting forward approach, it follows an overall trend that the more data we have, the better performance
we can achieve. The performance of only using the data from the first several weeks to predict the depressive
status at the end of the semester is not satisfactory. Moreover, we see a small drop in balanced accuracy from
week 8 to week 10, accompanied by a smaller drop in F1 score (see Figure 3a). This was during the mid-term

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 1, Article 42. Publication date: March 2021.



42:18 • Xu et al.

period and students might have been busy preparing for exams, indicating that such an break in their routine
might affect the effectiveness of the relevance metric for depression detection.
From the backward perspective, there is a peak in balanced accuracy using five weeks of data (end of study

back to week 11) (see Figure 3b). The F1 score also has a small peak, but it is less significant. This suggests that a
one-month period could be a good time window for signalling depression status. We will have more discussion
about the implications in Section 6.2.

5.2.2 How Many People Does The Algorithm Need? We also evaluated the method in terms of the number of
users required to establish a good training set. To determine this, we uniformly sample a certain number of users
from the whole dataset and call this the training dataset. The remaining users comprise the testing dataset. The
process is repeated one hundred times to obtain the mean and the standard error. Figure 4 visualizes the results.

Not surprisingly, both the balanced accuracy and the F1 score increase monotonically as the number of users
increases. The more users in the training set, the more likely a testing user can find users with similar or opposite
behavior, leading to better results. Such an increase becomes slower when the number of users is above 60. Both
metrics are close to a plateau when there are 60 participants.

5.2.3 How Does Each Feature Type Affect Algorithm’s Performance? In order to investigate the effect of each
feature type in Table 3, we further conducted a feature ablation study. For the seven features types – phone
screen, call, Bluetooth, location, campus, sleep, and step (as shown in Table 3) – we removed one of them and
re-ran the whole pipeline using the remaining six feature types. Figure 5 summarized the results.
We found that the two mobility-related feature types (location and campus) were the most important, and

removing them leads to the biggest drop in the balanced accuracy (17.3% and 6.6% absolute value, respectively).
This is supported by the previous literature [20, 47]. In contrast, removing Bluetooth feature has the least effect,
with 1.4% absolute value drop.

5.3 Generalizability of The Algorithm
We evaluated the generalizability of our algorithm from two aspects: 1) the pipeline-level generalizability (Sec-
tion 5.3.1): applying the whole algorithm to another dataset; and 2) the model-level generalizability (Section 5.3.2):
using one dataset to train the model and another dataset from a different population as the testing set.

Fig. 4. The results when using different numbers
of users for training. Each data point is the mean
of one hundred random samples from the dataset.
Error bars indicate the sample standard error.

Fig. 5. The balanced accuracy results of the feature ablation study. Each
time one of the seven feature types (as shown in Table 3) is removed and
the whole pipeline is applied on the remaining features. Error bars indicate
the sample standard error.
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5.3.1 Generalizability of The Pipeline. We replicated the whole pipeline on the second dataset (see Section 4.1). We
also compare the same baselines introduced in Section 5.1 against our method. All of the results are summarized
in Table 5 with the same five metrics.
On the second dataset, our algorithm still outperforms other baselines. The method achieves an accuracy

at 0.791, a balanced accuracy at 0.773, and a F1 score at 0.814, which has an advantage of 3.6%, 3.8%, and 2.8%
compared to the best CFC baseline, respectively. This verifies the generalizability of our pipeline: our method has
the potential to be applied to other independent studies.

Table 5. Evaluation of the pipeline-level generalizability of our method. We replicate the pipeline on another dataset with
similar data format. T-tests on the balanced accuracy and the F1 score shows that our method significantly outperforms the
best baseline method (p < 0.05 in all cases).

Classification Accuracy Bal Accuracy Precision Recall F1 Score
Majority 0.600 0.500 0.600 1.000 0.750
Single 0.626 0.637 0.742 0.583 0.653
KNN 0.583 0.576 0.671 0.607 0.638
LBR 0.647 0.620 0.692 0.750 0.720
LSTM 0.536 0.452 0.575 0.869 0.692
PLR 0.710 0.682 0.731 0.819 0.773
MSC 0.732 0.719 0.759 0.821 0.789
CFC 0.755 0.735 0.778 0.833 0.805

Our Algorithm 0.791 0.773 0.814 0.854 0.833

5.3.2 Generalizability of The Model. Beyond the pipeline-level generalizability, a stronger level of generalizability
would be model-level generalizability, i.e., applying a trained model directly on a new dataset. We evaluate this
aspect by using one dataset for training and the other one for testing.

Our relevance metric requires the two datasets to have the same number of days. Thus we tried a few methods
for alignment: uniformly down-sampling the first dataset as a semester (16 weeks) is longer than a quarter (10
weeks); taking the last 10 weeks from the first dataset; and taking the last month from both datasets, according to
the good performance in Figure 3b (the last month could get rid of the effect of midterms in both institutions). For
each method, we evaluated the model-level generalizability from two directions: train on the first institution’s
dataset and test on the second, and vice versa.
However, among all alignment methods and directions, the best model - using the last month’s data from

institution 2 for training and testing on the last month’s data from institution 1 - still has an unsatisfactory
performance. It achieves an accuracy of 0.608, a balanced accuracy of 0.570, and an F1 score of 0.698. This poorer
performance could be caused by multiple factors. For example, students from the two institutions are quite
different. It might be hard to find someone from one institution whose behavior is relevant to a student from
another institution with a different academic calendar system. Such a difference might become larger when
considering environment differences into account, such as the institutional culture, city size, season of the year,
etc. These factors would increase the difficulty of the model-level generalizability.

5.4 Interpretable Personalized Behavior Rules
Section 5.1 to Section 5.3 evaluates the performance of our classification algorithm described in Section 3.1.
Beyond achieving good classification results, we further show that our method (Algorithm 4) is able to generate
personalized understanding of individual students, especially those with depressive symptoms.
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Table 6. Evaluation of the model-level generalizability of our method. A model is trained on one dataset and then tested on
another dataset collected from another population.

Method Train/Test Accuracy Bal Accuracy Precision Recall F1 Score
Uniform Down-sample Ins1/Ins2 0.470 0.472 0.585 0.463 0.517
Uniform Down-sample Ins2/Ins1 0.515 0.471 0.588 0.678 0.630

Last 10 weeks Ins1/Ins2 0.567 0.569 0.676 0.561 0.613
Last 10 weeks Ins2/Ins1 0.557 0.504 0.611 0.745 0.672
Last one month Ins1/Ins2 0.597 0.547 0.642 0.768 0.700
Last one month Ins2/Ins1 0.608 0.570 0.657 0.745 0.698

The behavior rules generated from our method are tailored for every student who have positive labels (i.e.,
having depressive symptoms). Using the dataset from institution 1, we randomly picked two students with
moderate depression (P18 with post BDI-II score 24, and P72 with post BDI-II score 26) as anecdotal examples and
investigate how the personalized rules capture behavior differences from their identified user groups (students
without depressive symptoms) with different behaviors. Table 7 lists out a subset of these rules.

The majority of the rules from the two students are different. It is expected as these two students did not have
identical behavior. Interestingly, close inspections of the rules reveal both the homogeneity and the heterogeneity
at the same time. Some of their behaviors share commonalities that are supported by existing depression-related
literature, while some other behaviors are quite different between the two.

The top four rows of Table 7 shows examples of the homogeneity on sleep pattern and phone usage behavior.
P18’s weekend morning rule No.4 indicates that P18 had more interrupted sleep (higher number of sleep bouts)
compared to their identified group on weekend mornings when they were not at social spaces or dorm, and their
total numbers of sleep bouts (including being asleep, restless, awake) were low. Similarly, P72’s weekday all day
rule No.3 indicates that P72 had shorter sleep duration than the identified group when they have a low number
of incoming calls and away from social spaces. Both rules indicate that the two students’ sleep patterns were
disturbed. Similar sleep patterns were consistent among other students. Among the 38 students who were labeled
as being depressed, 92.1% of them (35 out of 38) had more than half of the rules about sleep showing a more
disturbed sleep pattern than in their respective identified group. Moreover, 73.7% (28 out of 38) had more than
seventy percent of the rules showing such a trend.

Beyond sleep patterns, homogeneity was also observed on phone usage patterns. For P18’s weekday evening
rule No.10, both the user and the identified group had high number of unlock per minute (same Y ) when they
mostly stayed at somewhere far from dorms and social spaces. Their rules have a similar support value but P18’s
rule had a higher confidence value, which means that this rule was more common for P18 than for the identified
group. This suggests that P18 was unlocking their phone more often. Likewise, P72’s weekday evening rule No.2
shows that P72 spent longer time than the identified group interacting with their phones when they remained
sedentary at some place out of the dorm. Both rules reflect that the two students had more active phone usage
than their respective identified groups. These patterns were also observed in other students: 73.7% of the users
with depressive symptoms have the majority of the rules about phone usage showing the same trend. We have
more discussion about the relationship between these behaviors and existing literature in Section 6.

In contrast, some rules capture behavior heterogeneity between P18 and P72. Examples related to mobility and
communication behavior are shown in the last four rows in Table 7. P18’s weekend all day rule No.23 suggests
that P18 spent a shorter time in sports spaces (for exercise) and green spaces (for relaxation) than the identified
group when they were out of dorms and far from large groups of people (indicated by the Bluetooth feature).
However, P72 had a rule with the opposite behavior: P72 spent more time in sports spaces than the identified
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group when they were out of the dorm and had a large location variance. A similar contrast was also observed
in phone call behavior. P72 had a shorter duration of outgoing phone calls than that of the identified group
(weekend all day rule No.21), indicating less social communication, while P18 had more outgoing calls than
the identified group under similar contexts. These distinguishing rules reflect individual behavior differences
between P18 and P72.

As our interpretation method is designed to mine each individual’s behavior rules independently, it can capture
the behavior similarity and the difference among users at the same time. Examples in Table 7 support that our
method can generate personalized rules that can support personalized interpretation.

Table 7. Examples of top paired rules that capture behavior differences between a target user with depression and their
identified groups without depression. Two rules in a pair have identical X and the same selected feature in Y (shown in bold).
Each item is displayed in a “[feature type]feature(discretized value)” manner. The bold feature highlights the difference
between the target user and the identified group. The dashed lines group the type of selected features such as sleep-related
and screen-related behavior. The first four rows show homogeneity between the two students, i.e., their differences against the
opposite groups are in the same direction, while the last four indicate heterogeneity. e.g., P18 has more social communication
than the opposite group but P72 has less.

PID Rule X Ytar
suptar
conftar

Yoppo
supoppo
confoppo

Property

18
Wkend
Morning
No.4

- [Campus] Pct. of time at
social space or dorm (low)
- [Sleep] Total bout nums
during the sleep (low)

- [Sleep] Num of bouts
being asleep (medium)

0.200
0.667

- [Sleep] Num of bouts
being asleep (low)

0.152
0.298

More disturbed
sleep pattern

72
Wkdy
Allday
No.3

- [Campus] Pct. of time at
dorm (low)

- [Sleep] Duration of being
asleep (low)
- [Campus] Pct. of time at
sports space (low)

0.367
0.550

- [Sleep] Duration of being
asleep (medium)
- [Campus] Pct. of time at
sports space (low)

0.172
0.246

More disturbed
sleep pattern

18
Wkdy
Evening
No.10

- [Location] Moving time
Pct. (low)
- [Campus] Pct. of time at
social space or dorm (low)

- [Screen] Num of unlock
per minute (high)

0.132
0.588

Same as Ytar
with lower conf

0.137
0.413

More phone
interaction

72
Wkdy
Evening
No.2

- [Location] Pct. of time at
home (low)
- [Step] Avg duration of
sedentary bouts (high)

- [Campus] Pct. of time at
dorm space (low)
- [Screen] Avg duration of
interaction bouts (high)

0.171
0.302

- [Campus] Pct. of time at
dorm space (low)
- [Screen] Avg duration of
interaction bouts (low)

0.161
0.395

More phone
interaction

18
Wkend
Allday
No.23

- [Bluetooth] Num of unique
others’ device (low)
- [Campus] Pct. of time at
social space or dorm (low)

- [Campus] Pct. of time at
greens space (low)
- [Campus] Pct. of
time at sport space (low)

0.267
1.000

Same as Ytar
with lower conf

0.222
0.435

More time
at sport space

72
Wkend
Allday
No.18

- [Location] Log of
location variance (high)
- [Campus] Pct. of time at
dorm (low)

- [Campus] Pct. of
time at sport space (low)

0.267
0.533

Same as Ytar
with higher sup and conf

0.356
0.744

Less time
at sport space

18
Wkend
Allday
No.21

- [Call] Num of
outgoing calls (low)

- [Sleep] Total bout nums
during the sleep (low)
- [Call] Num of
outgoing calls (medium)

0.133
0.364

- [Sleep] Total bout nums
during the sleep (low)
- [Call] Num of
outgoing calls (low)

0.300
0.720

More call
communication

72
Wkend
Evening
No.7

- [Call] Num of
outgoing calls (low)
- [Campus] Pct. of time at
dorm (low)

- [Call] Duration of
outgoing calls (low)

0.166
0.625

Same as Ytar
with lower sup and conf

0.158
0.441

Less call
communication
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6 DISCUSSION
We first discuss the insights obtained from the personalized behavior rules and their relationship with the
depression literature in Section 6.1. We then discuss the practical implications for depression detection leveraging
the results of our analysis Section 6.2. We also discuss potential usage of our methods beyond depression detection
in Section 6.3. Finally, we reflect on the limitations and potential future work in Section 6.4.

6.1 Personalized Rules and Depression Literature
Many of our findings in Section 5.4 are consistent with the existing literature on depression, adding support for
the validity of our methods. For instance, the first two rules in Table 7 are about sleep behavior for students
with depressive symptoms. P18’s weekend morning rule No.4 reflects more sleep bouts during the sleep, and
P72’s weekday allday rule No.3 indicates shorter sleep duration. Although the rules in Table 7 are just example
rules from two anecdotal cases, we found consistency among populations: 92.1% of the students with depressive
symptoms have the majority of the rules reflecting less favorable sleep patterns. These results can be supported
by relevant findings in psychology and clinical psychiatry that sleep disturbance, insomnia, and hypersomnia, are
common symptoms of depression [5, 53, 55]. In addition, the third and fourth rules in Table 7 indicate the effects
of depression on phone interaction behavior. P18’s weekday evening rule No.10 indicates more frequent screen
unlock behavior, and P72’s weekday evening No.2 indicates longer interaction duration. Similar behaviors are
also observed in other students having depression: 73.7% have the majority of rules showing more frequent phone
usage patterns. These align with the rich literature that depression may lead to more phone usage [17, 23, 47, 58].
Rules showing homogeneity have been found in a good population model [62]. The value of our approach is

that it further finds rules at a more fine-grained individual level: it finds rules that highlight individual differences,
as demonstrated by rules showing heterogeneity among students. Four rows in the bottom of Table 7 shows
examples for mobility and communication patterns. Although both P18 and P72 had depression, some of their
behaviors still differed significantly. This also supports the intuition behind our method that training samples are
treated differently according to their behavior relevance against the target user. Moreover, the interpretation rules
suggest a new opportunity to leverage these personalized, contextual rules in technology-supported interventions
for people with depression. The rules point out potential personalized design considerations for each individual
so that an intervention can better match a particular user’s behaviors. For instance, simply suggesting more
movement and socializing should not be a universal intervention recommendation for all people with depressive
symptoms. Some users should follow this while it is not appropriate for others. It would be unusual for a clinician
to just rely on universal recommendations [42]. The personalized rules may help to guide a more nuanced
assessment of individuals’ needs and the intervention can be tuned to better fit each individual. Continuing the
example of P18 and P72 in Table 7, the last two rules show the heterogeneity on phone call communication,
indicating that it might be more effective to offer socialization suggestions to P72 than P18.

6.2 Amount of Data for Depression Detection
Figure 3b suggests alternatives other than using data from the whole study period to build a model. In particular,
when using the data from week 11 to week 16 (the last month), the model achieves 0.790 in balanced accuracy
and 0.851 in F1 score, which is quite close to the best performance when using the whole dataset (0.819 balanced
accuracy and 0.855 F1 score,see in Table 4). Moreover, the last-month period also shows the strongest model-level
generalizability across the two institutions (Table 6). These results suggest that for people with depressive
symptoms, their recent-month behaviors may have more in common than the behaviors at other times, such that
the commonness can be captured by our behavior relevance metric. Such an observation implies that the most
recent month may be an informative period for depression diagnosis. Our method can potentially be leveraged,
in a sliding window mechanism with the window size as the recent month, for early identification.
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In addition to the number of days of data, the number of individuals used to build a good model also has
important implications. 60 appears to be an inflection point in Figure 4. This suggests that such a user population
size may be able to capture the majority of the behavior relevance for depression detection. However, 60 is not a
plateau point. The performance still continues to have small improvements as the number of users increases. In
our dataset, the results do not suggest a plateau yet, which indicates that a repository close to one-hundred users
is still not large enough to capture all behavior relevance, and the performance can be further improved if more
individuals’ data is included. Our findings can provide a reference sample size for other researchers in the area.

6.3 Beyond Depression Detection
In addition to depression detection as a case study in this paper, our method has the potential to be applied on
other daily-behavior-related binary classification tasks.

For example, in our institution 1 dataset, we have a small portion of students that had different BDI-II outcomes
before and after the semester (26 from no depression to at least mild depression and 1 from mild to no depression).
Detection of the change of depressive symptom can be an interesting and important task that worth investigation.
A simple classification task is to mark users as being changed and unchanged, and then apply our method directly.
It remains as an open question about how to incorporate the label dynamics. More generally, there are other
tasks beyond depressive symptoms, such as the problem of loneliness [45] and the measure of mindfulness [11],
that can also be explored using the same idea of collaborative filtering. When applying the method on a new
classification task, the algorithms don’t need to be changed. The behavior relevance metric still remains the
same as it is only related to users’ behavior trace rather than the specific classification goal. However, the feature
selection results (Algorithm 2) and personalized interpretation outcomes (Algorithm 4) are depended on the
classification target, thus leading to different results that are specific to a new task.

6.4 Limitations and Future Work
There are a few limitations in this work, which point out directions for future work. First, both datasets we used
only have a post-semester/quarter BDI-II score to use as the ground-truth. Compared to some other work that
has multiple labels for each individual (e.g., [60]), we could not investigate more fine-grained individual dynamics
of students’ state other than by comparing their behavior relevance, which also hinders the investigation of
the change of depression status, as mentioned in Section 6.3. In the future, we plan to collect ground-truth
more frequently and apply our method on datasets with multiple labels for each individual to exploit individual
dynamics. Having more labels will enable our algorithm to measure behavior relevance at a higher temporal
resolution, explicitly take the depression dynamics into account, and produce more fine-grained predictions.
We also plan to try semi-supervised learning, treating every two-weeks or every month (before the end of the
semester/quarter) as unlabeled data.

Second, Algorithm 1 and Algorithm 2 treat each feature independently. It is the majority voting that integrates
features across multiple streams and epochs. Also, our behavior relevance metric only requires the data to be
aligned day by day. The temporal order of the data is not leveraged by the algorithm, i.e., the classification results
will not change if all users’ data streams were re-sorted with the same order. We plan to work on new methods
that can compile multi-modal features effectively and include the temporal aspect of our data in our current
behavior metric. In addition, our method relies on the behavior features extracted from the dataset. Therefore, the
capability of our method is limited by these features. There may exist more meaningful features to be discovered
in the feature extraction part of our approach (Section 4.2), such as sleep hygiene patterns before bed and
heart rate patterns, which may enable our algorithm to better capture behavior relevance among individuals.
Moreover, there may exist better relevance metrics than square of correlation. For example, De Domenico et al.
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[15] proposed to leverage mutual information to quantify the correlation between two multivariate nonlinear
time series (mobility traces). There are more techniques to be explored in the future.
Third, we removed all participants who used Android phones because of the feature discrepancy across

platforms (Section 4.1.2). We plan to investigate the platform distinction more deeply in future work. In addition,
the removal of users who were missing more than half of their data might neglect some important cases: a
day of missing data could be related to students’ depression status (e.g., not charging one’s phone because of a
diminished desire for social interaction [5]). It is almost impossible to distinguish whether the missingness is
at random (due to various hardware or software issues) or caused by certain health-related factors. This could
introduce both sampling bias and imputation bias. Compared to other simple imputation methods such as mean
value imputation or previous-day imputation, our method better leverages population data. However, this method
would inevitably introduce bias because the missing completely at random (MCAR) assumption is violated. It
remains as an open question for how to incorporate participants with low-compliance appropriately.

7 CONCLUSION
In this paper, we present a new method for personalized behavior classification. Our method borrows the idea
from memory-based collaborative filtering and uses the behavior correlation square to capture the behavior
relevance among individuals. Moreover, it combines the relevance metric and association rule mining to obtain
personalized behavior rules. We applied our method on a passive sensing dataset collected from 97 undergraduate
students over one 16-week semester, whose depressive symptoms at the end of the semester were measured by
their post-semester BDI-II scores. The results show that our method outperforms the state-of-the-art model on
depression detection by 5.1% on the accuracy and 5.5% on the F1 score, with statistical significance. We further
evaluated our method by replicating the pipeline on a second dataset collected from another institution and
obtained similar results (3.4% improvement on average), demonstrating the pipeline-level generalizability of our
method. The results also imply that more future work is needed to achieve model-level generalizability. Moreover,
our method also generates highly interpretable rules that capture both the homogeneity and the heterogeneity in
students’ behavior related to depression, which could potentially inspire personalized depression intervention in
the future.
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