

Modelling Public Sentiment in Twitter:

Using Linguistic Patterns to Enhance Supervised Learning

Prerna Chikersal¹, Soujanya Poria¹, Erik Cambria¹, Alexander Gelbukh², and Chng Eng Siong¹

¹Nanyang Technological University, Singapore ²Instituto Politécnico Nacional, Mexico

The Task

Polarity classification of tweets

POSITIVE vs. NEGATIVE

Hasn't this already been done before?

Most current methods ignore some very important challenges!

Challenge 1: Linguistic Patterns

Most current methods:

- "One-size-fits-all" approach
 - E.g.: Word N-grams, etc.

Issues with Linguistic Patterns:

Examples	Human	N-grams
The prose is short, but nice.	POS	POS/ NEG
The prose is nice, but short.	NEG	POS/ NEG

Challenge 1: Linguistic Patterns

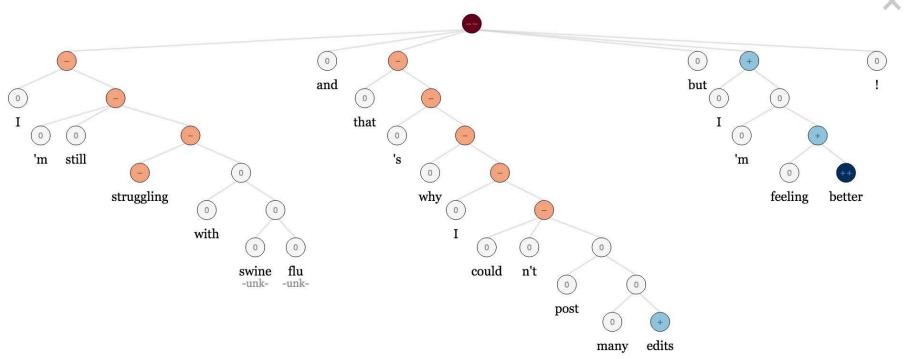
Stanford

- Deep learning, parse trees for sentences
- Tweets
 - Bad punctuation, long sentences, ...
 - Doesn't work for tweets!

I'm still struggling with swine flu and that's why I couldn't post many edits but I'm feeling better!

Human: POS

Challenge 1: Linguistic Patterns

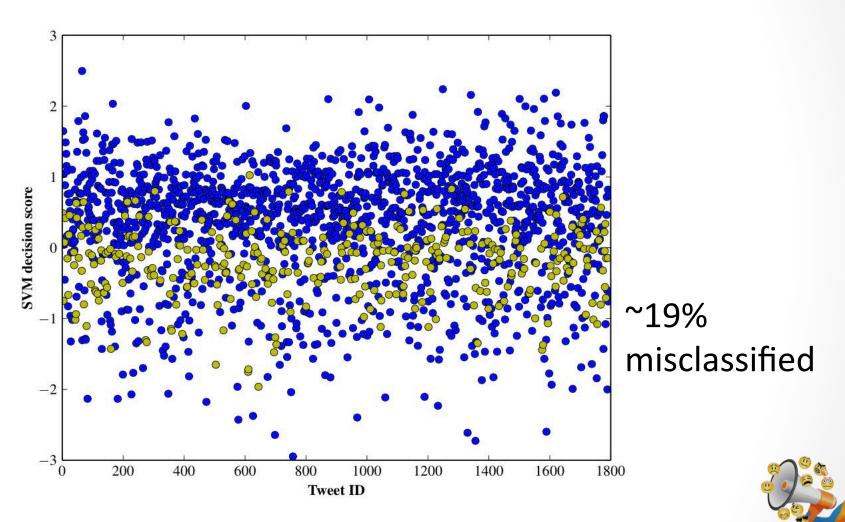


Stanford "Deep Learning for Sentiment Analysis" demo

Very Negative instead of Positive!

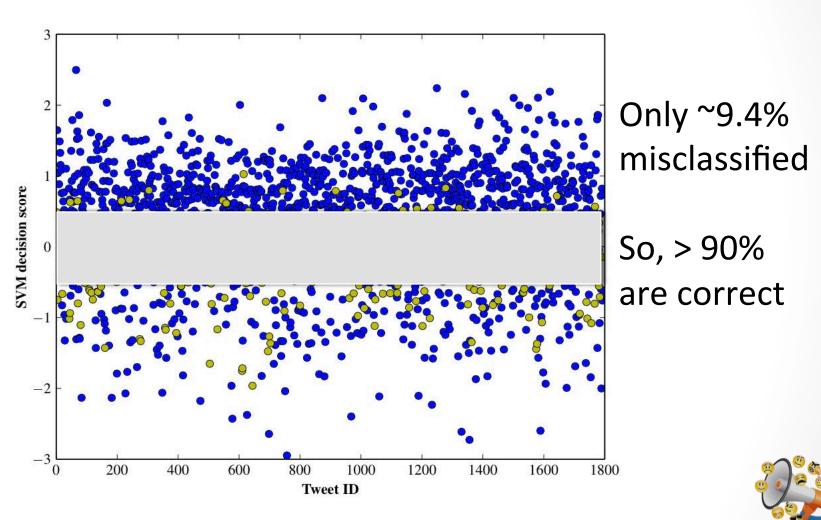
Socher, R., Perelygin, A., Wu, J. Y., Chuang, J., Manning, C. D., Ng, A. Y., & Potts, C. (2013, October). Recursive deep models for semantic compositionality over a sentiment treebank. In Proceedings of the conference on empirical methods in natural language processing (EMNLP) (Vol. 1631, p. 1642).

Challenge 2: SVM Decision Score



Most misclassifications occur between -0.5 and +0.5.

Challenge 2: SVM Decision Score



Excluding, right or wrong, between -0.5 and +0.5.

So, we propose...

Low decision score from SVM

Apply unsupervised rules

Verify or change SVM label

Challenge 3: Unsupervised Polarity

Based on positive and negative words...

But, is bag-of-words a good representation?

Challenge 3: Unsupervised Polarity

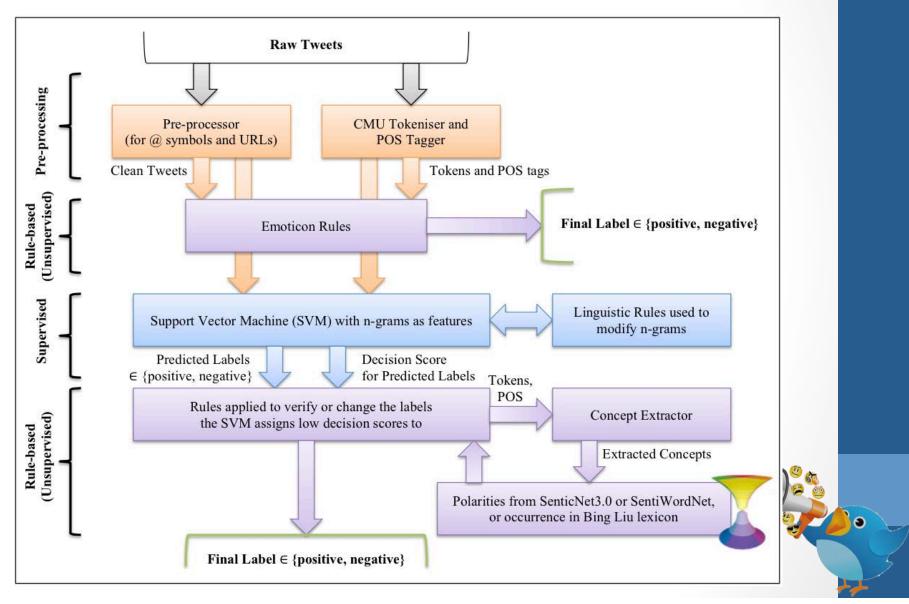
```
Polarity("prevent accident") !=
Polarity("prevent") + Polarity("accident")
```

```
Polarity("pocket money") !=

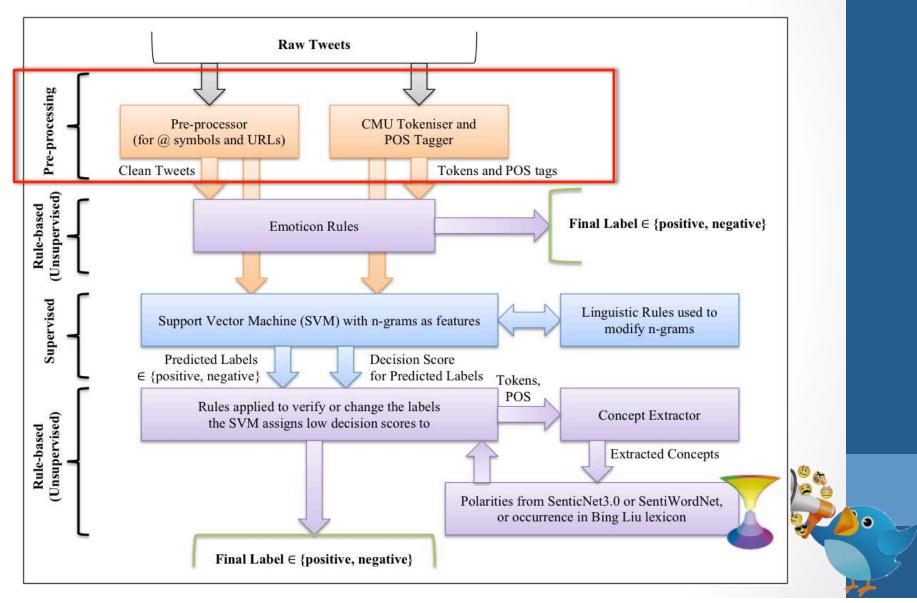
Polarity("pocket") + Polarity("money")
```

Lets use concepts!

System Overview



System Overview



Pre-processing

Normalization:

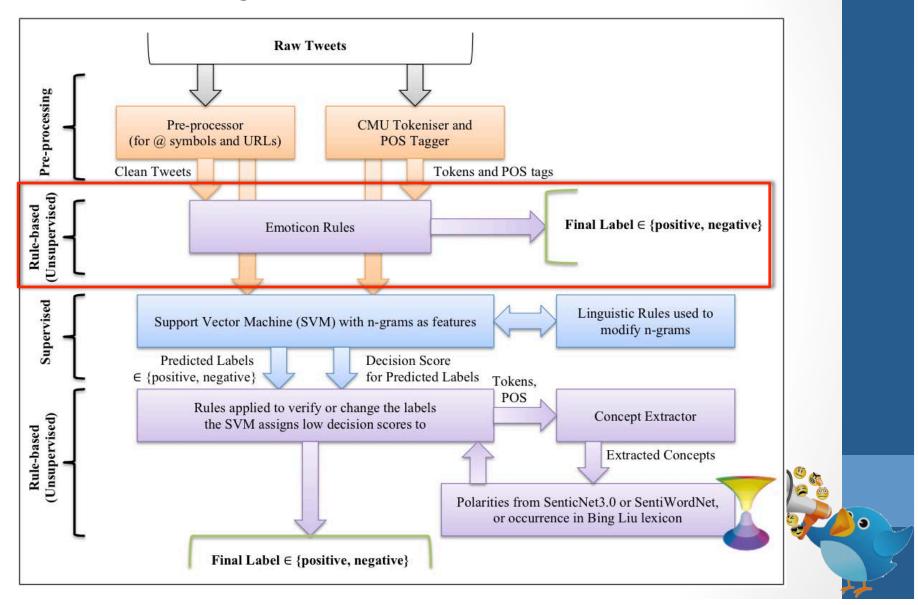
- @<username> → @USER
- URLs → http://URL.com

Negation:

- Tokens between negation word and next punctuation mark => appended with "_NEG".
- Negation words: e.g. never, no, don't, none, etc.

CMU Twitter Tokenizer and POS Tagger

System Overview



Emoticon Rules

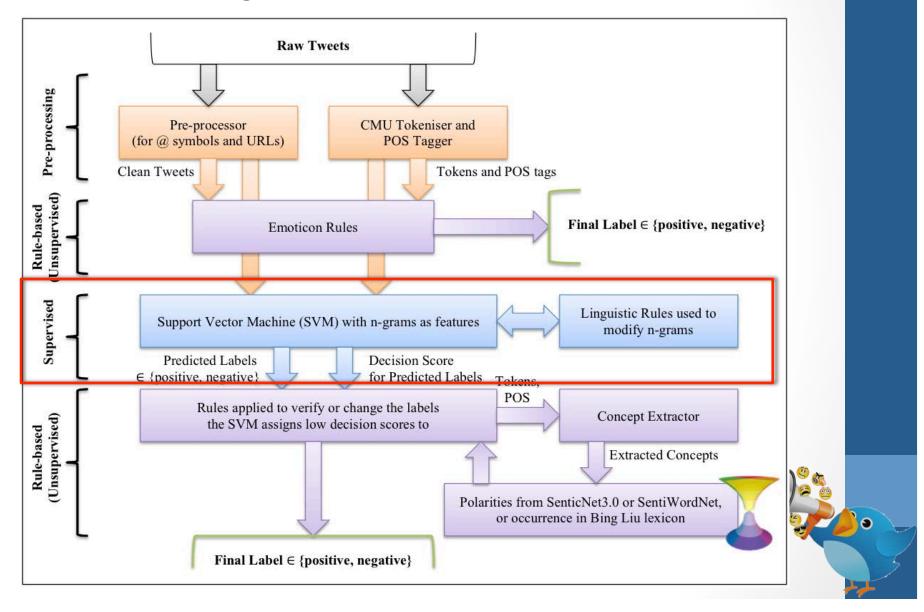
If a tweet contains a simple POS or NEG emoticon, the final label is assigned using emoticon rules.

POS :), :D, ^_^, etc

NEG:(,:'(,</3, etc

Ignore;),:O, etc => ambiguous sentiment

System Overview



"But" conjunction rules:

Most are of the form,

You didn't win ABC but you won over my heart. You may not know but you are quite good.

Salient part => after "but" kept

Everything else removed

You didn't win ABC but <u>you won over my heart.</u> You may not know but <u>you are quite good.</u>

Becomes

you won over my heart. you are quite good.

Conditional rules:

For "if", "in case", "until", and "unless":

- Remove the conditional clause
- Consequent clause remains

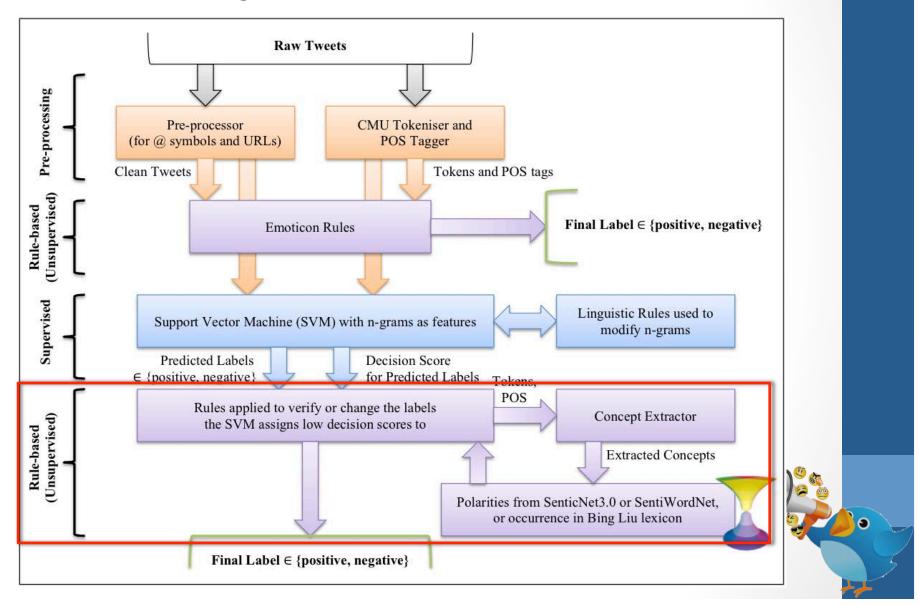
May not always work... but works for most cases.

If you work hard, you will get good grades.

Becomes:

you will get good grades.

System Overview



Decision score between -0.5 and +0.5

=> Unsupervised rules are applied

What are these rules?

Extract concepts from tweets
 Concepts = single-word + multi-word

Single-word Concept Extraction:

- a) Remove stop words
- b) All single-words left are concepts

Multi-word Concept Extraction:

- a) Remove stopwords
- b) Adjacent tokens with tags:

<N N>, <N V>, <V N>, <A N>, <R N>, <P, N>, <P V>

E.g.:

RT @USER what a beautiful day what a beautiful life http://URL.com

⇒"beautiful", "day", "life", "beautiful day", "beautiful life", ...

Query concepts in **SenticNet**.

Not found => SentiWordNet.

Not found => Bing Liu lexicon.

If #positive concepts > #negative concepts and max positive polarity is > +0.6 => POS

If #negative concepts > #positive concepts and max negative polarity is < -0.6 => NEG

Results

Trained supervised classifier on ~1.6 million positive and negative tweets.

Evaluated on 2 publicly available datasets:

SemEval 2013 Test Data

SemEval 2014 Test Data

(ignored "neutral" tweets)

Results (SemEval 2013)

Method	Favg
N-grams (uni+bi+tri)	77.43
N-grams and Emoticon Rules	78.00
Modified N-grams	77.70
Modified N-grams, and Emoticon Rules	78.27
Modified N-grams, Emoticon Rules, and Word-level Unsupervised Rules	80.98
Modified N-grams, Emoticon Rules, and Concept-level Unsupervised Rules	81.90

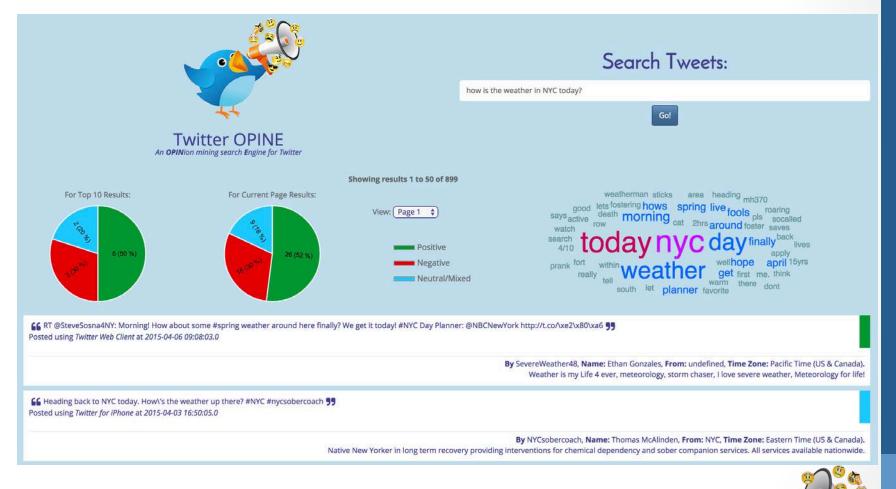
SemEval 2013 – 1794 tweets Overall, 4.47 units increase

Results (SemEval 2014)

Method	Favg
N-grams (uni+bi+tri)	76.69
N-grams and Emoticon Rules	77.19
Modified N-grams	76.73
Modified N-grams, and Emoticon Rules	77.21
Modified N-grams, Emoticon Rules, and Word-level Unsupervised Rules	79.64
Modified N-grams, Emoticon Rules, and Concept-level Unsupervised Rules	79.81

SemEval 2014 – 3584 tweets Overall, 3.12 units increase

Results (Online System)



Manually annotated 1000 tweets $F_{avg} = 78.82$

Conclusion

- Unsupervised emoticon rules and modified ngrams for supervised learning
 - => Handle special linguistic characteristics
- Verifying of changing low-confidence predictions of SVM using a secondary rulebased classifier
 - => Helps improve results also

Future Work

- Linguistic rules:
 - Works for majority of tweets
 - Can define more complex rules.
 for other conjunctions and conditionals,
 modal verbs, modifiers, etc.
- Unsupervised rule-based classifier:
 - Expanding commonsense KBs like SenticNet
- Subjectivity detection
- Spam removal from online system using social features of tweets.

Any questions?

SemEval 2013

Method	Positive			Negative			Average		
	P	R	F	P	R	F	P	R	F
N-grams	90.48	82.67	86.40	61.98	76.45	68.46	76.23	79.56	77.43
N-grams and Emoticon Rules	90.62	83.36	86.84	62.99	76.65	69.15	76.80	80.00	78.00
Modified N-grams	89.95	84.05	86.90	63.33	74.59	68.50	76.64	79.32	77.70
Modified N-grams, and Emoticon Rules	90.10	84.73	87.33	64.41	74.79	69.22	77.26	79.76	78.27
Modified N-grams, Emoticon Rules, and Word-level Unsuper- vised Rules		86.79	89.04	68.55	77.89	72.92	79.97	82.34	80.98
Modified N-grams, Emoticon Rules, and Concept-level Unsu- pervised Rules	1	86.56	89.40	68.96	80.79	74.41	80.69	83.68	81.90

Table 2. Results obtained on 1794 positive/negative tweets from the SemEval 2013 dataset.

SemEval 2014

Method	Positive			Negative			Average		
	P	R	F	P	R	F	P	R	F
N-grams	89.92	81.90	85.72	61.20	75.66	67.67	75.56	78.78	76.69
N-grams and Emoticon Rules	89.74	83.05	86.27	62.50	74.85	68.11	76.12	78.95	77.19
Modified N-grams	89.39	82.90	86.02	62.00	73.93	67.44	75.69	78.41	76.73
Modified N-grams, and Emoticon Rules	89.25	83.97	86.53	63.29	73.22	67.89	76.27	78.60	77.21
Modified N-grams, Emoticon Rules, and Word-level Unsuper- vised Rules	90.22	86.24	88.19	67.37	75.25	71.09	78.80	80.75	79.64
Modified N-grams, Emoticon Rules, and Concept-level Unsu- pervised Rules	1	86.20	88.25	67.45	75.76	71.37	78.93	80.98	79.81

Table 3. Results obtained on 3584 positive/negative tweets from the SemEval 2014 dataset.