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Depression in College Students

Difficulty functioning due to depression (33%)
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Most common disorder among people with suicidal behaviors!




Depression in College Students

Difficulty functioning due to depression (33%)
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Considered suicide (11.2%) [2015-16]
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Attempted suicide (2.1%) [2015-16]




Current treatments for depression are
effective and reduce the risk of suicide...
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Research Problem

- Students face many barriers to seeking treatment
- Most common - “Stress is a normal part of student life”

- Detecting and monitoring depression is necessary



Research Problem

- Students face many barriers to seeking treatment
- Most common - “Stress is a normal part of student life”

- Detecting and monitoring depression is necessary

- Current state:
- Periodic psychometric tests - Reduce compliance.

> Need more efficient tools to detect depression.



Research Goals

1. To detect depression as early as possible.
2. To enable interventions.
0 further the understanding of depression.




Solution

Our Work:

E.g. Call Logs, E.g.

Location Capture
— behavior and— _ Detect
symptoms Depression

- Detect:
1. Post-semester Depression (85.7%)
2. Change in Depression (84.3%)
3. Change in Levels of Depression (72.4%)



Previous Work

- Relationship between depression and:

- Location variance, regularity in movement patterns across
days, and evenness in time spent across locations.

- Phone usage and frequency
- Sleep duration
- Speech and conversation duration



Previous Work

- Used to detect depression using Machine Learning.

- Limitations:
- Small sample size.
- Short duration.
- Limited number and type of sensors.
- Don’t look at our three outcomes.
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Data Collection

- Participants
- 138 first-year college students.
- Provided Fitbit Flex 2 and adequately compensated.

- System for Passive Data Collection
- AWARE app for Android/ iOS.
- Fitbit APL.



Data Collection

Passively collected data
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Data Collection
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Data Collection

Outcomes (Ground Truth)

* Post-semester Depression
- Binary: “no depression” vs. ‘mild/ moderate/ severe depression”

- Change in Depression
- Binary: “severity level remains the same” vs. “severity level worsens”

* Change in Levels of Depression
- 4-class: By how much does severity level worsen?
“By 0 (same)”vs. “by 1”vs. “by 2”vs. “by 3”
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Feature Extraction: Temporal Slicing

- Features are aggregated over different temporal slices
instead of the whole semester.

- Why?



Feature Extraction: Temporal Slicing

- Features are aggregated over different temporal slices
instead of the whole semester.

- Why?

- 2 There are 45 such temporal slices.
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Feature Extraction: Feature Sets

. 7 feature sets

Bluetooth

Campus Map

- Each contains behavioral features
calculated over 45 temporal slices.

Location
- Understandable

- E.g. Location = “circadian movement”
(regularity in a person’s movement patterns).

Phone Usage
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Modeling

> 50K features and only 79 people from all feature sets!
—> Feature selection very challenging!

Training and Validating 1-Feature Set Models (Leave-one-out)
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Training and Validating 1 Feature-Set Models

Training and Validating 1-Feature Set Models (Leave-one-out)
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- Leave-one-out cross-validation
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Training and Validating Combined Feature-Sets Model
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- Leave-one-out cross-validation



Descriptive Statistics

- Depression
- Pre-semester, 14.5% students had depressive symptoms.
- Post-semester, this increased to 40.6%.

- Change in Depression
- Depression severity levels remained the same for 63.8% people.
- Only 3 people got better (and were excluded).
- Everyone else got worse.

- Change in Levels of Depression
- 55.3% got worse by 1 severity level.
- 34.1% got worse by 2 severity levels.
- 10.6% got worse by 3 severity levels.



Results



Results: Detecting Post-Semester Depression
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Results: Detecting Post-Semester Depression
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Results: Detecting Post-Semester Depression
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Results: Detecting Change in Depression
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Results: Detecting Change in Levels of Depression
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Results: Prediction

- Detection vs Prediction
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- Detection vs Prediction
- How early can we predict these outcomes?
- Use data from week 1 to week x.



Results: Prediction

- Detection vs Prediction
- How early can we predict these outcomes?
- Use data from week 1 to week x.

For Post-semester Depression,
Accuracy VS Prediction Time
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Implications



Implications - Examples

- Early Prediction models
- Preemptive interventions in future studies

Predicted risk for
depression is high!




Implications - Examples

- Understandable model
- Inform Treatment and self-guided reflection

¢




Implications - Examples

- Our Feature Extraction Library
- Tens of thousands of behavioral features!

- Can contribute to:
o Longitudinal and Inter-University

o Large initiatives that combine passive sensing with the
participants’ medical history, biological data, etc.

UCLA Grand Challenges

Depression

(100,000 participants) THE PRECISION MEDICINE INITIATIVE
(long-term, NIH)




Thank you!
* Questions?

« Contact:
Prerna Chikersal
Graduate Research Assistant
Human-Computer Interaction Institute
Carnegie Mellon University, Pittsburgh, PA
prerna@cmu.edu




