
CZ4046 Intelligent Agents
AY 2012-13 Sem 2
Final Assignment

A Hybrid Architecture for a Multiagent
System in TileWorld, Optimised using

Genetic Algorithms
Technical Report

Author:

Prerna Chikersal

Teammates:

Shailesh Ahuja, Niklas Forsmark, Bhargav Sosale and Chetna Goyal

We are team “Agents Undercover”

Lecturers:

Prof. Bo An and Prof. Michael Harold Lees



1 Introduction To Tileworld

TileWorld[1] is a widely used testbed for evaluating agent architectures. It contains grid cells
and every grid cell can either be empty or can contain an agent, a tile, a hole or an obstacle.
Agents can move up, down, left or right. The goal of the agent is to collect and move tiles to fill
the holes. The TileWorld environment is dynamic, that is, tiles, obstacles and holes appear and
disappear randomly. It is also highly parameterised, that is, the object creation rate, object
mean, lifetime of an object and few other parameters governing the dynamism (rate at which
new holes appear) and hostility (rate at which obstacles appear) are in the form of parameters
and can be controlled easily by tweaking the parameters. Upon receiving criticism regarding
TileWorld being too simple, [2] added a fuel level parameter and a refuelling station. In this
project, agents are given 1000 units of fuel, such that, the agent must return to refuel at the
refuelling station, before he has moved 1000 times. Also, when an agent fills a hole with a tile,
its score increases by 1. The total score of a run is the cumulative number of holes filled by
both agents.

2 Agent Architectures Developed and Tested

Initially, a reactive agent was implemented to understand how the MASON agent toolkit works.
After that, a simple practical reasoning agent was implemented. Reactive agents tend to perform
better in environments with larger number of resources, while practical reasoning agents work
better in environments with low dynamism and lesser number of resources. Since we want our
agent to perform well in all three environment configurations provided to us, we add reactive
capabilities to our practical reasoning agent, thus creating a hybrid agent architecture.

2.1 Reactive Agent Architecture

Purely reactive agents are agents which act without referring to their history. They have no
internal memory and base their actions purely on the present state of the environment.
That is, action: E → Ac, where E is the set of discrete instantaneous states of the environment
and Ac is the set of possible actions available to an agent.

Reactive agents perform well in an environment with a large number of resources. The dy-
namism of an environment is not very relevant to a reactive agent, since it never really remem-
bers when an object was last seen. In sparse environments with very less number of resources,
reactive agents tend to not perform well, since they do not deliberate or plan how to get to
a resource they had seen some time back; they rely completely on chance and keep moving
randomly till a resource appears and they are able to grab it.

The purely reactive agent we implemented in Tileworld, would move in any random direc-
tion, till it came across a tile it can grab. After grabbing the tile, it would once again resort
to moving aimlessly, until it sees a hole to put the tile in or another tile to collect. Whenever
the fuel units of the agent fell below a certain threshold, it would move towards the refuelling
station in order to refuel.

2.2 Reactive and Practical Reasoning Hybrid Agent Architecture

Practical reasoning agents are based on (i) deliberation, which involves, deciding what states
of affairs it wants to achieve, and (ii) means-end reasoning reasoning, which involves, deciding
how to achieve those states of affairs.

1



Based on percepts from the environment, beliefs are generated. In Tileworld, beliefs can be
location of tiles, holes, obstacles, other agents, etc. Based on the intentions and current beliefs,
the agent will derive desires like wanting to pick up a tile, wanting to refuel, wanting to drop
tile, etc. The beliefs, desires and intentions are then filtered to give new intentions. This is
our major decision making stage, which is completed with the help of utility functions.(Due to
limited space, I am not describing the utility functions in my report.) Then, the beliefs and new
intentions are used to generate a plan. A plan is the set of actions the agent needs to perform
to fulfil its intention. Finally the plan is executed and the agent will act according to the plan.
However, there are a number of issues in this method, such as:

• Beliefs change constantly, even while we are executing a plan. Hence, after executing each
action in a plan, it is necessary to fetch a new percept, derive new beliefs from it and
check if the plan is sound, given the new beliefs and previous intentions. If it is found that
the plan is no longer sound, the execution of the plan must stop and a new plan must be
generated. In Tileworld, the only situation where a plan becomes unsound is
when our intentions change, in which case, we’ll need to re-plan.

• Even with the above, the agent still remains over-committed to its intentions. Hence,
the agent must stop to determine whether its intention has succeeded or is impossible.
In Tileworld, the only situation where an intention becomes impossible is if
obstacles block the path to our intention. If the agent is completely surrounded
by obstacles, it will stay there and wait.

• Also, it is possible for intentions to change. For example, lets consider an agent exploring
a sparse environment. The agent will continue to explore unless it finds a tile. But, what
if the agent runs out of fuel in between? Then, there must be a way to get the agent
to reconsider and change its intentions. In Tileworld, we reconsider our intentions
and beliefs at every step, since it is a constantly changing environment. How-
ever, reconsidering intentions is an expensive process as it requires fetching new beliefs,
deriving desires and filtering those desires using utility functions, which can be expen-
sive to compute. Hence, it is important to decide when to call reconsider() and when to
not call reconsider(). For this purpose we change our architecture to a hybrid
architecture by adding high priority reactionary procedures.

3 Communicating Agents and Novel Exploration Strategy

“There is no such thing as a single agent system”. All, but the most trivial computer systems
contain many sub-systems which work together. We implement communication between two
agents with the hope that by working together, their cumulative score will increase. Although,
we are only allowed to communicate 3 things at a time, we have identified a total of 5 things
which when communicated can boost our score. Depending on the situation, we dynamically
decide the 3 things to send, out of the following:

• Request and Response for tiles and holes: Agents can ask other for the location of
the nearest tile to them. This is done in every time step.

• Intentions: Agents can communicate their intentions so as to avoid intention clashes.
When an agent’s intentions change, the new intentions are given a very high priority and
almost always communicated. When Agent 0 sends Agent 1 an intention, Agent 1 always

2



replies with an obstacle in Agent 0’s path. And if Agent 0’s intentions clash with Agent
1’s, Agent 1 changes its intention.

• Updating out-dated memory: If Agent 0 tells Agent 1 the location of some object,
and Agent 1 approaches that object, only to find that that object has disappeared, Agent
1 will send a message to Agent 0, asking him to update his outdated memory.

• Current Location: The agents tell each other their current locations after every 5 time
steps.

• Update Nearest Obstacle: Upon receiving an intention, the agent always responds
with an obstacle in the path of the other agent’s intention. This is done by creating a box
around the other agent, using the its current location (sent every 5 time steps) and target
location (location of intention), picking 10 random points in the box, finding obstacles
closest to those 10 points and finally, returning the location of the obstacle closest to the
other agent.

A novel Exploration Strategy is also implemented, which involves the agent keeping a track of
its previous locations in the environment, called snap points. Since the location is communicated
to the other agent, once in every 5 steps, both the agents can keep track of each other’s snap
points, so as to avoid exploring the same area.

4 Parameter Optimisation Using Genetic Algorithms

Utility functions (mentioned in teammates’ reports) help filter out intentions from desires and
are important for decision making. To calculate utilities, they use certain constants or thresh-
olds, which can be changed to give better results for different environments. Usually, these
parameters are hard to predict, hard to find and are often determined by hit and trial. The
search space for sets of these parameters is very large. Therefore, we need to use a probabilistic
optimisation algorithm to find optimal or good enough sets of parameters for agents in different
environments. Genetic algorithm is one such algorithm which can help us do this.

4.1 What are Genetic Algorithms?

Genetic algorithm (GA) is a search heuristic that mimics the process of natural selection. This
heuristic is routinely used to generate useful solutions to optimisation and search problems.
The outline of a genetic algorithm is as follows:

1. “Genesis” or initialisation: Create an initial set (population) of n candidate solutions,
which can be random or can be seeded by some hand-picked solutions.

2. Evaluation: Evaluate each member of the population using some fitness function.

3. Survival of the Fittest: Select a number of evaluated candidates with high fitness score
to be the parents of the next generation.

4. Evolution: Generate a new population of offsprings by randomly altering and/or com-
bining elements of the parent candidates. The evolution is performed by one or more
evolutionary operators. The most common operators are cross-over (combining) and mu-
tation (altering).

5. Iteration: Repeat steps 2-4 until a satisfactory solution is found or some other termina-
tion condition like max generation count, is met.

3



4.2 Implementation of Genetic Algorithms: An Overview

We use the Watchmaker Framework For Evolutionary Computation[3] to implement Genetic
Algorithms.

There are 2 prerequisites to implement genetic algorithms:

• Encode the parameters to be optimised into a separate data structure: In our
project, we take all the constants and threshold used in the utility functions and put them
in a data structure called “Genome”.

• Have a fitness function which can completely or partially evaluate the effec-
tiveness of solutions generated : In our project, the cumulative scores achieved by 2
agents in a multiagent system, during 1 run, becomes the fitness function.

4.3 Defining Rules for Evolution

To extend GA to Tileworld, the following is defined:

• “Genome” of an Agent: Data Structure containing parameters used by utility functions
of the hybrid agents.

• Candidate in the Population: Two homogenous agents (with same parameters) who
communicate with each other.

• Initialisation and Population Size: 1 Generation = Population size of 10 candidates
(10 pairs of agents), 5 of whom are initialised to default parameters chosen by hit and
trial. While, the other 5 are initialised to parameters chosen randomly.

• Number of Runs/ Termination Condition: Run for 20 generations and evolved using
GA. Termination Condition used is generation count, which is equal to 20.

• Fitness Function: We will train all candidates for the same environment. Hence, the
fitness function of a candidate is equal to the number of holes filled or score of the run.

• Selection of Parents for Reproduction: A Selection Strategy called ?Stochastic Uni-
versal Sampling? is used. This ensures that even in a population where some candidates
are much fitter than the rest, the less fitter candidates get a chance to reproduce. In a
small population, this also prevents the algorithm from converging too fast. Lets say we
place all candidates on a roulette wheel, giving them space proportional to their fitness,
and a candidate x occupies 4.5% of the wheel, then Stochastic Universal Sampling ensures
that candidate x is not allowed to reproduce more than 4 to 5 times.

• Elitism: Elitism specifies the % of the fittest parents which are moved unchanged into the
next generation. For our training, we have set elitism to be 0, because elitism causes the
algorithm to converge to a local optima too quickly. This is mainly because our population
size is very small, due to insufficient computational power.

• Genetic Operators:

– Mutation – Randomly changing some parameters in an agent to ensure diversity and
exploration of a greater search space.

– ’Crossover (reproduction) – Randomly picking some number of parameters (6 in our
training) in 2 agents and exchanging them.

4



5 Results and Analysis

All results below are shown with a sensor range of 2 and random seed of 9042014. Environments
1, 2 and 3 are configured according to the assignment manual.

5.1 Comparing Reactive, Practical Reasoning and Hybrid Agent Architec-
ture

Figure 1 and 2 shows the comparison between Reactive, Practical Reasoning and Hybrid Ar-
chitectures in Environments 1, 2 and 3 (as specified in the assignment manual), respectively.

Figure 1: Comparing Reactive, Practical Reasoning and Hybrid Agent Architecture

Figure 2: Comparing Reactive, Practical Reasoning and Hybrid Agent Architecture

From the above, we can see that Hybrid performs best in all 3 environments. Reactive
performs worst in all 3. While, Hybrid and Practical Reasoning perform equally in 1 and 3.

5



5.2 Visualising Improvement in Performance due to Genetic Algorithm Pa-
rameter Optimisation

Figure 3 and 4 shows the how the overall performance of the system improved significantly by
using GA for parameter optimisation in Environments 1, 2 and 3 (as specified in the assignment
manual), respectively.

Figure 3:

Figure 4:

6 Conclusion

From the above graphs, we can see that out of the architectures implemented, Hybrid Agent
Architecture performs the best in Tileworld. Also, additional features like Communication and
Exploration Strategy help to increase the score till a certain extent. Finally, Genetic Algo-
rithms, depending on the space they search, are almost always able to improve the performance
of the multiagent system. GA combined with the Hybrid architecture, Communication and
Exploration Strategy, seems to give the best possible score.

6



7 References

[1] http://www.cs.nott.ac.uk/WP/2002/2002-1.pdf
[2] Pollack, Martha E., et al. “Experimental investigation of an agent commitment strategy.”

Pittsburgh, PA 15260 (1994).
[3] http://watchmaker.uncommons.org/

7


	Introduction To Tileworld
	Agent Architectures Developed and Tested
	Reactive Agent Architecture
	Reactive and Practical Reasoning Hybrid Agent Architecture

	Communicating Agents and Novel Exploration Strategy 
	Parameter Optimisation Using Genetic Algorithms
	What are Genetic Algorithms?
	Implementation of Genetic Algorithms: An Overview
	Defining Rules for Evolution

	Results and Analysis
	Comparing Reactive, Practical Reasoning and Hybrid Agent Architecture
	Visualising Improvement in Performance due to Genetic Algorithm Parameter Optimisation

	Conclusion
	References

